The obstacle problem for Hessian equations on Riemannian manifolds

被引:5
|
作者
Jiao, Heming [1 ]
Wang, Yong [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
关键词
Obstacle problem; Fully nonlinear equations; Viscosity solution; Regularity; DIRICHLET PROBLEM; HYPERSURFACES;
D O I
10.1016/j.na.2013.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the obstacle problem for a class of fully nonlinear equations on Riemannian manifolds. The C-1,C-1 regularity of the greatest viscosity solutions is established. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 50 条
  • [31] Dynamic interpolation for obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo J.
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (03) : 588 - 600
  • [32] HESSIAN EQUATIONS ON CLOSED HERMITIAN MANIFOLDS
    Zhang, Dekai
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 485 - 510
  • [33] On the Zermelo problem in Riemannian manifolds
    Palacek, Radomir
    Krupkova, Olga
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (02): : 77 - 81
  • [34] THE IMBEDDING PROBLEM FOR RIEMANNIAN MANIFOLDS
    NASH, J
    ANNALS OF MATHEMATICS, 1956, 63 (01) : 20 - 63
  • [35] Local minimizers for variational obstacle avoidance on Riemannian manifolds
    Goodman, Jacob R.
    JOURNAL OF GEOMETRIC MECHANICS, 2023, 15 (01): : 59 - 72
  • [36] Variational point-obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2021, 33 (01) : 109 - 121
  • [37] Reduction by Symmetry in Obstacle Avoidance Problems on Riemannian Manifolds
    Goodman J.R.
    Colombo L.J.
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (01) : 26 - 53
  • [38] Variational point-obstacle avoidance on Riemannian manifolds
    Anthony Bloch
    Margarida Camarinha
    Leonardo Colombo
    Mathematics of Control, Signals, and Systems, 2021, 33 : 109 - 121
  • [39] CAUCHY UNIQUENESS IN THE RIEMANNIAN OBSTACLE PROBLEM
    ALEXANDER, SB
    BERG, ID
    BISHOP, RL
    LECTURE NOTES IN MATHEMATICS, 1986, 1209 : 1 - 7
  • [40] EQUATIONS OF HYDRODYNAMICS ON COMPACT RIEMANNIAN MANIFOLDS
    SZEPTYCKI, P
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (04): : 335 - 339