Brusatol Protects HepG2 Cells against Oxygen-Glucose Deprivation-Induced Injury via Inhibiting Mitochondrial Reactive Oxygen Species-Induced Oxidative Stress

被引:7
|
作者
Zhu, Shajun [1 ,2 ]
Liu, Siyuan [3 ]
Wang, Lu [3 ]
Ding, Wangwang [3 ]
Sha, Jinqi [4 ]
Qian, Haixin [1 ]
Lu, Yapeng [3 ]
机构
[1] Soochow Univ, Affiliated Hosp 1, Dept Gen Surg, Suzhou 215006, Peoples R China
[2] Nantong Univ, Affiliated Hosp, Dept Hepatobiliary Surg, Nantong, Peoples R China
[3] Nantong Univ, Inst Special Environm Med, Nantong 226019, Peoples R China
[4] Nantong Univ, Coll Med, Nantong, Peoples R China
基金
中国国家自然科学基金;
关键词
Brusatol; Oxygen-glucose deprivation; Reactive oxygen species; Mitochondrial anoxia; reoxygenation; ISCHEMIA-REPERFUSION INJURY; ISCHEMIA/REPERFUSION INJURY; CYTOCHROME-C; HYPOXIA/REOXYGENATION; MECHANISM; RELEASE; DEATH;
D O I
10.1159/000504482
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background:It has been reported that brusatol (BRU) reduces cellular reactive oxygen species (ROS) level under hypoxia; here the protective effect of BRU against oxygen-glucose deprivation/reoxygenation (OGD-R)-induced injury in HepG2 cells and against anoxia/reoxygenation (A/R)-induced injury in rat liver mitochondria was investigated.Materials and Methods:OGD-R-induced HepG2 cell viability loss was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and trypan blue staining. Mitochondrial ROS level in HepG2 cells was measured by MitoSOX staining. The cellular malondialdehyde and adenosine triphosphate level was measured by commercial kits. The mitochondrial membrane potential in HepG2 cells was measured by JC-1 staining. The protein level was detected by Western blotting. Rat liver mitochondria were separated by differential centrifugation. A/R-induced injury in isolated rat liver mitochondria was established by using a Clark oxygen electrode. The ROS generation in isolated mitochondria was evaluated using Amplex red/horseradish peroxidase.Results:BRU reduced mitochondrial ROS level and alleviated oxidative injury in HepG2 cells, thereby significantly inhibited OGD-R-induced cell death. During OGD-R, BRU improved mitochondrial function and inhibited the release of cytochrome c. Furthermore, BRU showed a clear protective effect against A/R-induced injury in isolated rat liver mitochondria. When isolated rat liver mitochondria were pretreated with BRU, A/R-induced ROS generation was significantly decreased, and mitochondrial respiratory dysfunction was ameliorated.Conclusions:BRU pretreatment attenuated OGD-R-induced injury in HepG2 cells and A/R-induced injury in isolated rat liver mitochondria by inhibiting mitochondrial ROS-induced oxidative stress.
引用
收藏
页码:416 / 423
页数:8
相关论文
共 50 条
  • [31] Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis
    Ying-Zhi Li
    Ai-Ping Wu
    Dan-Dan Wang
    Pan-Pan Yang
    Bin Sheng
    Asian Pacific Journal of Tropical Biomedicine, 2023, (02) : 70 - 79
  • [32] Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis
    Li, Ying-Zhi
    Wu, Ai-Ping
    Wang, Dan-Dan
    Yang, Pan-Pan
    Sheng, Bin
    ASIAN PACIFIC JOURNAL OF TROPICAL BIOMEDICINE, 2023, 13 (02) : 70 - 79
  • [33] Ginkgolide K protects SH-SY5Y cells against oxygen-glucose deprivation-induced injury by inhibiting the p38 and JNK signaling pathways
    Liu, Qiu
    Li, Xueke
    Li, Liang
    Xu, Zhiliang
    Zhou, Jun
    Xiao, Wei
    MOLECULAR MEDICINE REPORTS, 2018, 18 (03) : 3185 - 3192
  • [34] Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury
    Zhang, Yi
    Zhang, Jingjing
    Wu, Chuntao
    Guo, Sheng
    Su, Jing
    Zhao, Wendong
    Xing, Hongxia
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3757 - 3764
  • [35] Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis
    Wu, Xuemei
    Zhao, Jing
    Yu, Shanshan
    Chen, Yanlin
    Wu, Jingxian
    Zhao, Yong
    NEUROSCIENCE BULLETIN, 2012, 28 (05) : 509 - 516
  • [36] 3-Aminotriazole protects against cobalt (II) chloride-induced cytotoxicity by inhibiting reactive oxygen species formation and preventing mitochondrial damage in HepG2 cells
    Lee, Joon No
    Park, Jane
    Kim, Seul-Gi
    Kim, Min Soo
    Lim, Jae-Young
    Choe, Seong-Kyu
    MOLECULAR & CELLULAR TOXICOLOGY, 2017, 13 (01) : 125 - 132
  • [37] 3-Aminotriazole protects against cobalt (II) chloride-induced cytotoxicity by inhibiting reactive oxygen species formation and preventing mitochondrial damage in HepG2 cells
    Joon No Lee
    Jane Park
    Seul-Gi Kim
    Min Soo Kim
    Jae-Young Lim
    Seong-Kyu Choe
    Molecular & Cellular Toxicology, 2017, 13 : 125 - 132
  • [38] Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis
    Xuemei Wu
    Jing Zhao
    Shanshan Yu
    Yanlin Chen
    Jingxian Wu
    Yong Zhao
    Neuroscience Bulletin, 2012, 28 : 509 - 516
  • [39] DIPYRIDAMOLE INCREASES OXYGEN-GLUCOSE DEPRIVATION-INDUCED INJURY IN CORTICAL CELL-CULTURE
    LOBNER, D
    CHOI, DW
    STROKE, 1994, 25 (10) : 2085 - 2089
  • [40] Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury
    Qian, Yisong
    Guan, Teng
    Tang, Xuzhen
    Huang, Longfei
    Huang, Menghao
    Li, Yunman
    Sun, Hongbin
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2011, 670 (01) : 148 - 153