Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers

被引:5
|
作者
Kimura, WD [1 ]
Andreev, NE
Babzien, M
Ben-Zvi, I
Cline, DB
Dilley, CE
Gottschalk, SC
Hooker, SM
Kusche, KP
Kuznetsov, SV
Pavlishin, IV
Pogorelsky, IV
Pogosova, AA
Steinhauer, LC
Ting, A
Yakimenko, V
Zigler, A
Zhou, F
机构
[1] STI Optron Inc, Bellevue, WA 98004 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[4] Russian Acad Sci, Inst High Energy Densities, Moscow 125412, Russia
[5] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[6] Univ Oxford, Oxford OX1 3PU, England
[7] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA
[8] USN, Res Lab, Washington, DC 20375 USA
关键词
laser acceleration; laser wakefield acceleration; inverse free electron laser; CO2; laser; microbunch;
D O I
10.1098/rsta.2005.1726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO2 laser beam.
引用
收藏
页码:611 / 622
页数:12
相关论文
共 50 条
  • [31] CO2 lasers in ophthalmology
    Meyer-Rüsenberg, HW
    Emmerich, KH
    Klein, N
    OPHTHALMOLOGE, 2000, 97 (03): : 194 - 196
  • [32] CO2 WAVEGUIDE LASERS
    BRIDGES, TJ
    BURKHARDT, EG
    SMITH, PW
    APPLIED PHYSICS LETTERS, 1972, 20 (10) : 403 - +
  • [33] A look at CO2 lasers
    不详
    WELDING JOURNAL, 1998, 77 (06) : 12 - 12
  • [34] Pulsed CO2 Lasers
    Pensack, Ryan
    PHOTONICS SPECTRA, 2011, 45 (02) : 12 - 12
  • [35] CO2 lasers in ophthalmology [CO2-laser in der augenheilkunde]
    Meyer-Rüsenberg H.-W.
    Emmerich K.-H.
    Klein N.
    Der Ophthalmologe, 2000, 97 (3): : 194 - 196
  • [36] CO2 TEA LASERS
    DAUGHERT.JD
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1972, QE 8 (06) : 594 - &
  • [37] ELECTRON ENERGY DISTRIBUTION IN DISCHARGES USED FOR CO2 LASERS
    NOVGOROD.MZ
    SVIRIDOV, AG
    SOBOLEV, NN
    JETP LETTERS-USSR, 1968, 8 (07): : 211 - &
  • [38] Inverse Cerenkov acceleration and inverse free-electron laser experimental results for staged electron laser acceleration
    Campbell, LP
    Dilley, CE
    Gottschalk, SC
    Kimura, WD
    Quimby, DC
    Steinhauer, LC
    Babzien, M
    Ben-Zvi, I
    Gallardo, JC
    Kusche, KP
    Pogorelsky, IV
    Skaritka, JR
    van Steenbergen, A
    Yakimenko, VE
    Cline, DB
    He, P
    Liu, YB
    Pantell, RH
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (04) : 1143 - 1151
  • [39] EFFICIENCY OF DIAGRAMS OF ACCELERATION OF FREE-ELECTRON CONVERSION LASERS
    BUTS, VA
    ZHURNAL TEKHNICHESKOI FIZIKI, 1990, 60 (06): : 133 - 134
  • [40] Laser marker built on multichannel or slab CO2 lasers
    Plinski, EF
    Witkowski, JS
    Abramski, KM
    XI INTERNATIONAL SYMPOSIUM ON GAS FLOW AND CHEMICAL LASERS AND HIGH-POWER LASER CONFERENCE, 1997, 3092 : 206 - 209