A Class of Singular Symmetric Markov Processes

被引:7
|
作者
Xu, Fangjun [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
Dirichlet form; Levy process; Stable process; Nash inequality; Harmonic function; Support theorem; Holder continuity; HEAT KERNELS; INEQUALITIES; REGULARITY;
D O I
10.1007/s11118-011-9270-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of pure jump Markov processes in whose jump kernels are comparable to that of a certain d-dimensional L,vy process. Upper and lower bounds for the transition densities of these processes are obtained. We show that bounded harmonic functions associated with these processes are Holder continuous.
引用
收藏
页码:207 / 232
页数:26
相关论文
共 50 条
  • [11] Absolute continuity of symmetric Markov processes
    Chen, ZQ
    Fitzsimmons, PJ
    Takeda, M
    Ying, J
    Zhang, TS
    ANNALS OF PROBABILITY, 2004, 32 (3A): : 2067 - 2098
  • [12] Crossing estimates for symmetric Markov processes
    Z.-Q. Chen
    P.J. Fitzsimmons
    R. Song
    Probability Theory and Related Fields, 2001, 120 : 68 - 84
  • [13] On general perturbations of symmetric Markov processes
    Chen, Z. -Q.
    Fitzsimmons, P. J.
    Kuwae, K.
    Zhang, T. -S.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (04): : 363 - 374
  • [14] Symmetric Markov Processes with Tightness Property
    Takeda, Masayoshi
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 489 - 499
  • [15] The Case of General Symmetric Markov Processes
    Le Jan, Yves
    MARKOV PATHS, LOOPS AND FIELDS: SAINT-FLOUR PROBABILITY SUMMER SCHOOL XXXVIII-2008, 2011, 2026 : 99 - 113
  • [16] Traces of symmetric Markov processes and their characterizations
    Chen, Zhen-Qing
    Fukushima, Masatoshi
    Ying, Jiangang
    ANNALS OF PROBABILITY, 2006, 34 (03): : 1052 - 1102
  • [17] Crossing estimates for symmetric Markov processes
    Chen, ZQ
    Fitzsimmons, PJ
    Song, R
    PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (01) : 68 - 84
  • [18] A class of stationary Markov processes
    Jayakumar, K
    Pillai, RN
    APPLIED MATHEMATICS LETTERS, 2002, 15 (04) : 513 - 519
  • [19] Singular limits of Schrodinger operators and Markov processes
    de Verdière, YC
    Pan, Y
    Ycart, B
    JOURNAL OF OPERATOR THEORY, 1999, 41 (01) : 151 - 173
  • [20] SINGULAR PARABOLIC EQUATIONS AND MARKOV-PROCESSES
    KOCHUBEI, AN
    DOKLADY AKADEMII NAUK SSSR, 1983, 273 (01): : 33 - 38