Revealing architectural order with quantitative label-free imaging and deep learning

被引:46
|
作者
Guo, Syuan-Ming [1 ]
Yeh, Li-Hao [1 ]
Folkesson, Jenny [1 ]
Ivanov, Ivan E. [1 ]
Krishnan, Anitha P. [1 ,4 ]
Keefe, Matthew G. [2 ]
Hashemi, Ezzat [3 ]
Shin, David [2 ]
Chhun, Bryant B. [1 ]
Cho, Nathan H. [1 ,5 ]
Leonetti, Manuel D. [1 ]
Han, May H. [3 ]
Nowakowski, Tomasz J. [2 ]
Mehta, Shalin B. [1 ]
机构
[1] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[3] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[4] Genentech Inc, San Francisco, CA USA
[5] Univ Calif San Francisco, San Francisco, CA 94143 USA
来源
ELIFE | 2020年 / 9卷
关键词
PHASE MICROSCOPY; ORIENTATION; MYELINATION; TRANSPORT; HISTOLOGY; DYNAMICS; ARRAY;
D O I
10.7554/eLife.55502
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using bright-field imaging. We report a variant of U-Net architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.
引用
收藏
页码:1 / 38
页数:33
相关论文
共 50 条
  • [11] Label-Free Nuclear Staining Reconstruction in Quantitative Phase Images Using Deep Learning
    Vicar, Tomas
    Gumulec, Jaromir
    Balvan, Jan
    Hracho, Michal
    Kolar, Radim
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 239 - 242
  • [12] Artificial confocal microscopy for deep label-free imaging
    Chen, Xi
    Kandel, Mikhail E.
    He, Shenghua
    Hu, Chenfei
    Lee, Young Jae
    Sullivan, Kathryn
    Tracy, Gregory
    Chung, Hee Jung
    Kong, Hyun Joon
    Anastasio, Mark
    Popescu, Gabriel
    NATURE PHOTONICS, 2023, 17 (03) : 250 - +
  • [13] Artificial confocal microscopy for deep label-free imaging
    Xi Chen
    Mikhail E. Kandel
    Shenghua He
    Chenfei Hu
    Young Jae Lee
    Kathryn Sullivan
    Gregory Tracy
    Hee Jung Chung
    Hyun Joon Kong
    Mark Anastasio
    Gabriel Popescu
    Nature Photonics, 2023, 17 : 250 - 258
  • [14] Deep-tissue label-free quantitative optical tomography
    van der Horst, Jelle
    Trull, Anna K.
    Kalkman, Jeroen
    OPTICA, 2020, 7 (12) : 1682 - 1689
  • [15] Architectural order identification across label-free living cell imaging with a swin transformer-conditional GAN
    Liu, Shitou
    Sun, Guocheng
    Liu, Xi
    Guo, Qianjin
    Biomedical Physics and Engineering Express, 2025, 11 (03):
  • [16] Label-free quantitative phase imaging and analysis of airborne pollen
    Kumar, Anand
    Dhawan, Sachin
    Bhatt, Sunil
    Saxena, Anuj
    Khare, Mukesh
    Dubey, Satish Kumar
    Mehta, Dalip Singh
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [17] PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
    Yair Rivenson
    Tairan Liu
    Zhensong Wei
    Yibo Zhang
    Kevin de Haan
    Aydogan Ozcan
    Light: Science & Applications, 8
  • [18] Quantitative Label-Free Sperm Imaging by Means of Transport of Intensity
    Poola, Praveen Kumar
    Pandiyan, Vimal Prabhu
    Jayaraman, Varshini
    John, Renu
    QUANTITATIVE PHASE IMAGING II, 2016, 9718
  • [19] PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
    Rivenson, Yair
    Liu, Tairan
    Wei, Zhensong
    Zhang, Yibo
    de Haan, Kevin
    Ozcan, Aydogan
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [20] The application of label-free imaging technologies in transdermal research for deeper mechanism revealing
    Danping Zhang
    Qiong Bian
    Yi Zhou
    Qiaoling Huang
    Jianqing Gao
    Asian Journal of Pharmaceutical Sciences, 2021, 16 (03) : 265 - 279