Empirical likelihood inference for semi-parametric estimating equations

被引:3
|
作者
Wang ShanShan [1 ]
Cui HengJian [2 ]
Li RunZe [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Dept Stat & Financial Math, Beijing 100875, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Dept Stat, Beijing 100048, Peoples R China
[3] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
confidence region; coverage probability; empirical likelihood ratio; semi-parametric estimating equation; Wilk's theorem; CONFIDENCE-INTERVALS; REGRESSION-ANALYSIS; LINEAR-MODELS; IMPUTATION; FUNCTIONALS; PARAMETERS;
D O I
10.1007/s11425-012-4494-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Qin and Lawless (1994) established the statistical inference theory for the empirical likelihood of the general estimating equations. However, in many practical problems, some unknown functional parts h(t) appear in the corresponding estimating equations E (F) G(X, h(T), beta) = 0. In this paper, the empirical likelihood inference of combining information about unknown parameters and distribution function through the semi-parametric estimating equations are developed, and the corresponding Wilk's Theorem is established. The simulations of several useful models are conducted to compare the finite-sample performance of the proposed method and that of the normal approximation based method. An illustrated real example is also presented.
引用
收藏
页码:1247 / 1262
页数:16
相关论文
共 50 条
  • [31] Robust Bayesian synthetic likelihood via a semi-parametric approach
    An, Ziwen
    Nott, David J.
    Drovandi, Christopher
    STATISTICS AND COMPUTING, 2020, 30 (03) : 543 - 557
  • [32] EMPIRICAL LIKELIHOOD AND GENERAL ESTIMATING EQUATIONS
    QIN, J
    LAWLESS, J
    ANNALS OF STATISTICS, 1994, 22 (01): : 300 - 325
  • [33] Multivariate binormal mixtures for semi-parametric inference on ROC curves
    Sarat C. Dass
    Seong W. Kim
    Journal of the Korean Statistical Society, 2011, 40 : 397 - 410
  • [34] Multivariate binormal mixtures for semi-parametric inference on ROC curves
    Dass, Sarat C.
    Kim, Seong W.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (04) : 397 - 410
  • [35] Inference in semi-parametric spline mixed models for longitudinal data
    Sinha S.K.
    Sattar A.
    METRON, 2015, 73 (3) : 377 - 395
  • [36] Statistical inference on semi-parametric partial linear additive models
    Wei, Chuan-hua
    Liu, Chunling
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 809 - 823
  • [37] INFERENCE IN SEMI-PARAMETRIC DYNAMIC MODELS FOR REPEATED COUNT DATA
    Sutradhar, Brajendra C.
    Warriyar, K. V. Vineetha
    Zheng, Nan
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (03) : 397 - 434
  • [38] Estimating a semi-parametric duration model without specifying heterogeneity
    Hausman, Jerry A.
    Woutersen, Tiemen
    JOURNAL OF ECONOMETRICS, 2014, 178 : 114 - 131
  • [39] Optimal estimating function for estimation and prediction in semi-parametric models
    Durairajan, T. M.
    William, Martin L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3283 - 3292
  • [40] Information geometry of estimating functions in semi-parametric statistical models
    Amari, S
    Kawanabe, M
    BERNOULLI, 1997, 3 (01) : 29 - 54