Further results on permutation polynomials via linear translators

被引:0
|
作者
Qin, Xiaoer [1 ]
Yan, Li [2 ]
机构
[1] Yangtze Normal Univ, Coll Math & Stat, Chongqing 408100, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
美国国家科学基金会;
关键词
Permutation polynomial; linear translator; the system of linear equations; rank; FINITE-FIELDS; TRINOMIALS;
D O I
10.1142/S0219498820501662
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using linear translators, we characterize a new class of permutation polynomials of the form x + Sigma(k)(i=1)gamma(i)h(i)(fi(x)), which has a more general form than x +gamma h(f(x)). Then, we present the compositional inverses of such permutation polyno- mials. Furthermore, by specifying the functions h(i)(x) and f(i)(x), we can get some new permutation polynomials of the forms x + gamma(1)(Tr(beta(1)x)+delta(1))(s1) + gamma(2) (Tr(beta(2)x) + delta(2))(s2) and x+gamma(1)(Tr(x)+delta)(s)(1)+gamma(2)(Tr(x)+delta(2))(s2), where Tr(x) is the trace function.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Constructing permutation polynomials from permutation polynomials of subfields
    Reis, Lucas
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [22] FURTHER RESULTS IN THE THEORY OF MATRIX POLYNOMIALS
    SPENCER, AJM
    RIVLIN, RS
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1960, 4 (03) : 214 - 230
  • [23] FURTHER RESULTS ON STIELTJES AND VANVLECK POLYNOMIALS
    ALRASHED, AM
    ZAHEER, N
    ARAB GULF JOURNAL OF SCIENTIFIC RESEARCH, 1986, 4 (01): : 223 - 234
  • [24] FURTHER RESULTS CONCERNING EULERIAN POLYNOMIALS
    DERR, LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 761 - &
  • [25] Permutation and complete permutation polynomials
    Bassalygo, L. A.
    Zinoviev, V. A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 198 - 211
  • [26] Permutation Polynomials of ■
    Danyao WU
    Pingzhi YUAN
    JournalofMathematicalResearchwithApplications, 2023, 43 (02) : 166 - 174
  • [27] On permutation polynomials
    Wang, LY
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (03) : 311 - 322
  • [28] SUMS OF POLYNOMIALS AS PERMUTATION POLYNOMIALS
    NIEDERRE.HG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 360 - &
  • [29] Further results on permutation polynomials of the form (xpm - x plus δ)s + x over Fp2m
    Gupta, Rohit
    Sharma, R. K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 196 - 208
  • [30] Some new results on permutation polynomials over finite fields
    Ma, Jingxue
    Zhang, Tao
    Feng, Tao
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (02) : 425 - 443