The relationship between Gaussian process based c-regression models and kernel c-regression models

被引:1
|
作者
Hamasuna, Yukihiro [1 ]
Yokoyama, Yuya [2 ]
Takegawa, Kaito [2 ]
机构
[1] Kindai Univ, Cyber Informat Res Inst, Fac Informat, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
[2] Kindai Univ, Grad Sch Sci & Engn, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
关键词
clustering; c-regression model; gaussian process; kernel method;
D O I
10.1109/SCISISIS55246.2022.10002098
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Kernel regression and Gaussian process regression are known methods for representing non-linear regression models. The c-regression models is a method for obtaining the cluster partition and regression model simultaneously. The kernel c-regression models is a typical method of extending the c-regression models to the non-linear. This paper proposes a c-regression models based on Gaussian process regression as an approach to non-linearisation that differs from kernel c-regression models. Next, the relationship between the proposed method and the kernel c-regression models is presented. It is then shown experimentally that the proposed method and kernel c-regression models yield the same results under the same parameters and initial values.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Adaptive Fuzzy C-Regression Modeling for Time Series Forecasting
    Maciel, Leandro
    Lemos, Andre
    Ballini, Rosangela
    Gomide, Fernando
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 917 - 924
  • [42] Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models
    Moez Soltani
    Achraf Jabeur Telmoudi
    Yassine Ben Belgacem
    Abdelkader Chaari
    Neural Computing and Applications, 2020, 32 : 11361 - 11371
  • [43] Hybrid System Identification by Incremental Fuzzy C-regression Clustering
    Blazic, Saso
    Skrjanc, Igor
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [44] Fuzzy c-regression model with a new cluster validity criterion
    Kung, CC
    Lin, CC
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1499 - 1504
  • [45] T-S Fuzzy Affine Linear Modeling Algorithm by Possibilistic c-Regression Models Clustering Algorithm
    Kung, Chung-Chun
    Ku, Hong-Chi
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1242 - 1247
  • [46] Parameters identification and discharge capacity prediction of Nickel-Metal Hydride battery based on modified fuzzy c-regression models
    Soltani, Moez
    Telmoudi, Achraf Jabeur
    Ben Belgacem, Yassine
    Chaari, Abdelkader
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15): : 11361 - 11371
  • [47] Fuzzy c-Regression Models with Direction-dependent Uncertainty and Its Application to Residential Solar Electric Power Analysis
    Iwata, Shunsuke
    Honda, Katsuhiro
    Notsu, Akira
    Ichihashi, Hidetomo
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [48] A fuzzy C-regression model algorithm using a new PSO algorithm
    Taieb, Adel
    Soltani, Moez
    Chaari, Abdelkader
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (01) : 115 - 133
  • [49] A PSO-Based Fuzzy c-Regression Model Applied to Nonlinear Data Modeling
    Soltani, Moez
    Chaari, Abdelkader
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2015, 23 (06) : 881 - 891
  • [50] Fuzzy probability c-regression estimation based on least squares support vector machine
    Sun, Zonghai
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 874 - 881