Not much helicity is needed to drive large-scale dynamos

被引:8
|
作者
Graham, Jonathan Pietarila [1 ]
Blackman, Eric G. [2 ]
Mininni, Pablo D. [3 ,4 ,5 ]
Pouquet, Annick [3 ]
机构
[1] Los Alamos Natl Lab MS B258, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[5] Consejo Nacl Invest Cient & Tecn, Inst Fis Buenos Aires IFIBA, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
基金
美国国家科学基金会;
关键词
MAGNETIC-FIELD; SIMULATIONS; TURBULENCE;
D O I
10.1103/PhysRevE.85.066406
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding the in situ amplification of large-scale magnetic fields in turbulent astrophysical rotators has been a core subject of dynamo theory. When turbulent velocities are helical, large-scale dynamos that substantially amplify fields on scales that exceed the turbulent forcing scale arise, but the minimum sufficient fractional kinetic helicity f(h,C) has not been previously well quantified. Using direct numerical simulations for a simple helical dynamo, we show that f(h,C) decreases as the ratio of forcing to large-scale wave numbers k(F)/k(min) increases. From the condition that a large-scale helical dynamo must overcome the back reaction from any nonhelical field on the large scales, we develop a theory that can explain the simulations. For k(F)/k(min) >= 8 we find f(h,C) less than or similar to 3%, implying that very small helicity fractions strongly influence magnetic spectra for even moderate-scale separation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Large-scale flow generation by inhomogeneous helicity
    Yokoi, N.
    Brandenburg, A.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [22] From large-scale to small-scale dynamos in a spherical shell
    Richardson, K. J.
    Hollerbach, R.
    Proctor, M. R. E.
    PHYSICS OF FLUIDS, 2012, 24 (10)
  • [23] WHY ARE LARGE-SCALE TRIALS NEEDED
    CALIFF, RM
    CORONARY ARTERY DISEASE, 1992, 3 (02) : 92 - 95
  • [24] Large-scale dynamos in rapidly rotating plane layer convection
    Bushby, P. J.
    Kaepylae, P. J.
    Masada, Y.
    Brandenburg, A.
    Favier, B.
    Guervilly, C.
    Kaepylae, M. J.
    ASTRONOMY & ASTROPHYSICS, 2018, 612
  • [25] Large-scale convective dynamos in a stratified rotating plane layer
    Mizerski, Krzysztof A.
    Tobias, Steven M.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2013, 107 (1-2): : 218 - 243
  • [26] CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY
    Zhang, H.
    Moss, D.
    Kleeorin, N.
    Kuzanyan, K.
    Rogachevskii, I.
    Sokoloff, D.
    Gao, Y.
    Xu, H.
    ASTROPHYSICAL JOURNAL, 2012, 751 (01):
  • [27] Oscillatory large-scale dynamos from Cartesian convection simulations
    Kapyla, P. J.
    Mantere, M. J.
    Brandenburg, A.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2013, 107 (1-2): : 244 - 257
  • [28] Large-scale balances and asymptotic scaling behaviour in spherical dynamos
    Calkins, Michael A.
    Orvedahl, Ryan J.
    Featherstone, Nicholas A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (02) : 1228 - 1245
  • [29] Large-scale cosmological magnetic fields and magnetic helicity
    Semikoz, VB
    Sokoloff, DD
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (11): : 1839 - 1854
  • [30] Current helicity of the large-scale photospheric magnetic field
    Pevtsov, AA
    Latushko, SM
    ASTROPHYSICAL JOURNAL, 2000, 528 (02): : 999 - 1003