On a theorem of Erdos, Rubin, and Taylor on choosability of complete bipartite graphs
被引:0
|
作者:
Kostochka, Alexandr
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Urbana, IL 61801 USA
Russian Acad Sci, Inst Math, Novosibirsk 630090, RussiaUniv Illinois, Urbana, IL 61801 USA
Kostochka, Alexandr
[1
,2
]
机构:
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
来源:
ELECTRONIC JOURNAL OF COMBINATORICS
|
2002年
/
9卷
关键词:
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Erdos, Rubin, and Taylor found a nice correspondence between the minimum order of a complete bipartite graph that is not r-choosable and the minimum number of edges in an r-uniform hypergraph that is not 2-colorable (in the ordinary sense). In this note we use their ideas to derive similar correspondences for complete k partite graphs and complete k-uniform k-partite hypergraphs.