Computer-Aided Genetic Algorithm Based Multi-Objective Optimization of Laser Trepan Drilling

被引:32
|
作者
Kumar, Sanjay [1 ]
Dubey, Avanish Kumar [1 ]
Pandey, Arun Kumar [1 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Mech Engn, Allahabad 211004, Uttar Pradesh, India
关键词
Laser trepan drilling; Recast layer thickness; Regression analysis; Genetic algorithm; Multi-objective optimization; NEURAL-NETWORK; QUALITY; RECAST;
D O I
10.1007/s12541-013-0152-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The laser trepan drilling (LTD) has proven to produce better quality holes in advanced materials as compared with laser percussion drilling (LPD). But due to thermal nature of LTD process, it is rarely possible to completely remove the undesirable effects such as recast layer, heat affected zone and micro cracks. In order to improve the hole quality, these effects are required to be minimized. This research paper presents a computer-aided genetic algorithm-based multi-objective optimization (CGAMO) methodology for simultaneous optimization of multiple quality characteristics. The optimization results of the software CGAMO has been tested and validated by the published literature. Further, CGAMO has been used to simultaneously optimize the recast layer thickness (RLT) at entrance and exit in LTD of nickel based superalloy sheet. The predicted results show minimization of 99.82% and 85.06% in RLT at entrance and exit, respectively The effect of significant process parameters on RLT has also been discussed.
引用
收藏
页码:1119 / 1125
页数:7
相关论文
共 50 条
  • [31] Multi-objective optimization with improved genetic algorithm
    Ishibashi, H
    Aguirre, HE
    Tanaka, K
    Sugimura, T
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3852 - 3857
  • [32] An improved genetic algorithm for multi-objective optimization
    Chen, GL
    Guo, WZ
    Tu, XZ
    Chen, HW
    Progress in Intelligence Computation & Applications, 2005, : 204 - 210
  • [33] A parallel multi-objective genetic algorithm on cluster computer
    Shi, Lianshuan
    Liu, Hui
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 47 - 49
  • [34] Multi-objective optimization based on parallel multi-families genetic algorithm
    Lu, Hai
    Yan, Liexiang
    Shi, Bin
    Lin, Zixiong
    Li, Xiaochun
    Huagong Xuebao/CIESC Journal, 2012, 63 (12): : 3985 - 3990
  • [35] An interval multi-objective optimization algorithm based on elite genetic strategy
    Cui, Zhihua
    Jin, Yaqing
    Zhang, Zhixia
    Xie, Liping
    Chen, Jinjun
    INFORMATION SCIENCES, 2023, 648
  • [36] Test Case Optimization and Prioritization Based on Multi-objective Genetic Algorithm
    Mishra, Deepti Bala
    Mishra, Rajashree
    Acharya, Arup Abhinna
    Das, Kedar Nath
    HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 371 - 381
  • [37] Design optimization of a runflat structure based on multi-objective genetic algorithm
    Zhou, Guan
    Ma, Zheng-Dong
    Cheng, Aiguo
    Li, Guangyao
    Huang, Jin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2015, 51 (06) : 1363 - 1371
  • [38] Genetic algorithm based multi-objective reliability optimization in interval environment
    Sahoo, Laxminarayan
    Bhunia, Asoke Kumar
    Kapur, Parmad Kumar
    COMPUTERS & INDUSTRIAL ENGINEERING, 2012, 62 (01) : 152 - 160
  • [39] Optimization of Vehicle Routing Problem Based on Multi-objective Genetic Algorithm
    Zhong, Ru
    Wu, Jianping
    Du, Yiman
    SUSTAINABLE DEVELOPMENT OF URBAN INFRASTRUCTURE, PTS 1-3, 2013, 253-255 : 1356 - +
  • [40] Genetic algorithm based multi-objective optimization of a Firewater Deluge System
    Borisevic, J.
    Bartlett, L. M.
    RISK, RELIABILITY AND SOCIETAL SAFETY, VOLS 1-3: VOL 1: SPECIALISATION TOPICS; VOL 2: THEMATIC TOPICS; VOL 3: APPLICATIONS TOPICS, 2007, : 107 - 114