Parallel surrogate-assisted optimization: Batched Bayesian Neural Network-assisted GA versus q-EGO
被引:24
|
作者:
论文数: 引用数:
h-index:
机构:
Briffoteaux, Guillaume
[1
,3
]
Gobert, Maxime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mons, Math & Operat Res Dept MARO, Mons, Belgium
Univ Lille, CNRS CRIStAL, Inria Lille Nord Europe, Lille, FranceUniv Mons, Math & Operat Res Dept MARO, Mons, Belgium
机构:
Univ Mons, Math & Operat Res Dept MARO, Mons, Belgium
Univ Lille, CNRS CRIStAL, Inria Lille Nord Europe, Lille, FranceUniv Mons, Math & Operat Res Dept MARO, Mons, Belgium
Gmys, Jan
[1
,3
]
Mezmaz, Mohand
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mons, Math & Operat Res Dept MARO, Mons, BelgiumUniv Mons, Math & Operat Res Dept MARO, Mons, Belgium
Mezmaz, Mohand
[1
]
Melab, Nouredine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille, CNRS CRIStAL, Inria Lille Nord Europe, Lille, FranceUniv Mons, Math & Operat Res Dept MARO, Mons, Belgium
Melab, Nouredine
[3
]
Tuyttens, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mons, Math & Operat Res Dept MARO, Mons, BelgiumUniv Mons, Math & Operat Res Dept MARO, Mons, Belgium
Tuyttens, Daniel
[1
]
机构:
[1] Univ Mons, Math & Operat Res Dept MARO, Mons, Belgium
Surrogate-based optimization is widely used to deal with long-running black-box simulation-based objective functions. Actually, the use of a surrogate model such as Kriging or Artificial Neural Network allows to reduce the number of calls to the CPU time-intensive simulator. Bayesian optimization uses the ability of surrogates to provide useful information to help guiding effectively the optimization process. In this paper, the Efficient Global Optimization (EGO) reference framework is challenged by a Bayesian Neural Network-assisted Genetic Algorithm, namely BNN-GA. The Bayesian Neural Network (BNN) surrogate is chosen for its ability to provide an uncertainty measure of the prediction that allows to compute the Expected Improvement of a candidate solution in order to improve the exploration of the objective space. BNN is also more reliable than Kriging models for high-dimensional problems and faster to set up thanks to its incremental training. In addition, we propose a batch-based approach for the parallelization of BNN-GA that is challenged by a parallel version of EGO, called q-EGO. Parallel computing is a highly important complementary way (to surrogates) to deal with the computational burden of simulation-based optimization. The comparison of the two parallel approaches is experimentally performed through several benchmark functions and two real-world problems within the scope of Tuberculosis Transmission Control (TBTC). The study presented in this paper proves that parallel batched BNN-GA is a viable alternative to q-EGO approaches being more suitable for high-dimensional problems, parallelization impact, bigger data-bases and moderate search budgets. Moreover, a significant improvement of the solutions is obtained for the two TBTC problems tackled.
机构:
Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South Korea
Demeke, Wabi
Kim, Yongtae
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South Korea
Kim, Yongtae
Jung, Jiyoung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South Korea
Jung, Jiyoung
Chung, Jaywan
论文数: 0引用数: 0
h-index: 0
机构:
Korea Electrotechnol Res Inst KERI, Energy Convers Res Ctr, 12 Jeongiui gil, Chang Won 51543, Gyoengsangnam d, South KoreaKorea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South Korea
Chung, Jaywan
Ryu, Byungki
论文数: 0引用数: 0
h-index: 0
机构:
Korea Electrotechnol Res Inst KERI, Energy Convers Res Ctr, 12 Jeongiui gil, Chang Won 51543, Gyoengsangnam d, South KoreaKorea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South Korea
Ryu, Byungki
Ryu, Seunghwa
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol KAIST, Dept Mech Engn, 291 Daehak ro, Daejeon 34141, South Korea
机构:
Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
Fu, Jiaping
Jin, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
Jin, Jing
Yang, Jingxian
论文数: 0引用数: 0
h-index: 0
机构:
China Ship Dev & Design Ctr, Wuhan 430064, Peoples R ChinaCent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
Yang, Jingxian
Liu, Zixin
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
Liu, Zixin
Qian, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
Qian, Jing
Lin, Hai
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Pazhou Lab, Guangzhou 510330, Peoples R China
South China Univ Technol, Guangdong Prov Key Lab Computat Intelligence & Cy, Guangzhou 510006, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Li, Jian-Yu
Zhan, Zhi-Hui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Pazhou Lab, Guangzhou 510330, Peoples R China
South China Univ Technol, Guangdong Prov Key Lab Computat Intelligence & Cy, Guangzhou 510006, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Zhan, Zhi-Hui
Xu, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Tencent Inc, WeChat, Data Qual Team, Shenzhen 518052, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Xu, Jin
Kwong, Sam
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Kwong, Sam
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Ansan 15588, South Korea
Zhejiang Normal Univ, Jinhua 321004, Zhejiang, Peoples R China
Chaoyang Univ Technol, Taichung 413310, TaiwanSouth China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China