Hidden impacts of ocean acidification to live and dead coral framework

被引:103
|
作者
Hennige, S. J. [1 ]
Wicks, L. C. [1 ]
Kamenos, N. A. [2 ]
Perna, G. [2 ]
Findlay, H. S. [3 ]
Roberts, J. M. [1 ,4 ,5 ]
机构
[1] Heriot Watt Univ, Ctr Marine Biodivers & Biotechnol, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland
[3] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England
[4] Univ N Carolina, Dept Biol Sci, Wilmington, NC 28403 USA
[5] Scottish Assoc Marine Sci, Oban PA37 1QA, Argyll, Scotland
基金
英国自然环境研究理事会;
关键词
ocean acidification; cold-water corals; climate change; biomineralization; calcification; Lophelia pertusa; COLD-WATER CORALS; LOPHELIA-PERTUSA; CARBON-DIOXIDE; CALCIFICATION; SEAWATER; DEEP; REEFS; SCLERACTINIA; DISSOCIATION; DISSOLUTION;
D O I
10.1098/rspb.2015.0990
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Benthic buffers and boosters of ocean acidification on coral reefs
    Anthony, K. R. N.
    Diaz-Pulido, G.
    Verlinden, N.
    Tilbrook, B.
    Andersson, A. J.
    BIOGEOSCIENCES, 2013, 10 (07) : 4897 - 4909
  • [42] Modelling coral polyp calcification in relation to ocean acidification
    Hohn, S.
    Merico, A.
    BIOGEOSCIENCES, 2012, 9 (11) : 4441 - 4454
  • [44] Scuba divers, coral reefs, and knowledge of ocean acidification
    Apps, Kirin
    Heagney, Elizabeth
    Ngoc, Quach Thi Khanh
    Dimmock, Kay
    Benkendorff, Kirsten
    MARINE POLICY, 2023, 155
  • [45] Ocean acidification effects on in situ coral reef metabolism
    Steve S. Doo
    Peter J. Edmunds
    Robert C. Carpenter
    Scientific Reports, 9
  • [46] Ocean warming and acidification synergistically increase coral mortality
    Prada, F.
    Caroselli, E.
    Mengoli, S.
    Brizi, L.
    Fantazzini, P.
    Capaccioni, B.
    Pasquini, L.
    Fabricius, K. E.
    Dubinsky, Z.
    Falini, G.
    Goffredo, S.
    SCIENTIFIC REPORTS, 2017, 7
  • [47] Energetic consequences of ocean acidification and warming for coral larvae
    Rivest, E. B.
    Chen, C. -S
    Fan, T. -Y
    Li, H. -H
    Edmunds, P. J.
    Hofmann, G. E.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2013, 53 : E360 - E360
  • [48] The indirect effects of ocean acidification on corals and coral communities
    Hill, Tessa S.
    Hoogenboom, Mia O.
    CORAL REEFS, 2022, 41 (06) : 1557 - 1583
  • [49] Red coral extinction risk enhanced by ocean acidification
    Cerrano, Carlo
    Cardini, Ulisse
    Bianchelli, Silvia
    Corinaldesi, Cinzia
    Pusceddu, Antonio
    Danovaro, Roberto
    SCIENTIFIC REPORTS, 2013, 3
  • [50] Ocean acidification and warming will lower coral reef resilience
    Anthony, Kenneth R. N.
    Maynard, Jeffrey A.
    Diaz-Pulido, Guillermo
    Mumby, Peter J.
    Marshall, Paul A.
    Cao, Long
    Hoegh-Guldberg, Ove
    GLOBAL CHANGE BIOLOGY, 2011, 17 (05) : 1798 - 1808