Anomaly Detection in Multicore Embedded Systems

被引:1
|
作者
Conradi Hoffmann, Jose Luis [1 ]
Horstmann, Leonardo Passig [1 ]
Frohlich, Antonio Augusto [1 ]
机构
[1] Univ Fed Santa Catarina, Software Hardware Integrat Lab, Florianopolis, SC, Brazil
关键词
Embedded Systems Design; Real-time Systems; Multicore Scheduling; Performance Monitoring; Machine Learning; Anomaly Detection;
D O I
10.1109/sbesc49506.2019.9046093
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an Anomaly Detection implementation with the usage of Artificial Neural Network (ANN) for Multicore Embedded Systems. The detector is built over a sophisticated Real-Time Multicore scheduling framework that allowed capturing high-quality run-time data for the Machine Learning (ML) process and provided the necessary infrastructure for the ANN to be embedded. To conceive the detector we first defined the system's sane behaviour through a set of performance counters, providing the necessary information to define an anomaly. After describing the ML process and the ANN embedding details, we evaluate the results of the detection adding a different task to the execution and showing the embedded detector was able to successfully classify over 95% of the execution, never misinterpreting an anomaly as a sane task, with no interference on application execution time, once the anomaly detector runs on core 0, which is reserved for system management and control operations. Also, the maximum delay to detect that the running task is an anomaly was equal to 1 sampling of the performance monitoring counters (configured with captures spaced by 10ms, or 100 captures per second). We conclude the experiments showing the effectiveness of our runtime ANN anomaly detector by actuating on the suspension of the tasks classified as an anomaly, maintaining a sane execution by mitigating anomalies.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A dynamically reconfigurable communication architecture for multicore embedded systems
    Bayar, Salih
    Yurdakul, Arda
    JOURNAL OF SYSTEMS ARCHITECTURE, 2012, 58 (3-4) : 140 - 159
  • [42] Extraction of Recursion Level Parallelism for Embedded Multicore Systems
    Aguilar, Miguel Angel
    Leupers, Rainer
    Ascheid, Gerd
    Eusse, Juan Fernando
    INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION (SAMOS 2017), 2017, : 154 - 162
  • [43] The Influence of Parallel Programming Interfaces on Multicore Embedded Systems
    Lorenzon, Arthur F.
    Sartor, Anderson L.
    Cera, Marcia C.
    Beck, Antonio Carlos S.
    39TH ANNUAL IEEE COMPUTERS, SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC 2015), VOL 2, 2015, : 617 - 625
  • [44] Power-Aware Checkpointing for Multicore Embedded Systems
    Ansari, Mohsen
    Safari, Sepideh
    Khdr, Heba
    Gohari-Nazari, Pourya
    Henkel, Joerg
    Ejlali, Alireza
    Hessabi, Shaahin
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4410 - 4424
  • [45] From Scilab to Multicore Embedded Systems: Algorithms and Methodologies
    Goulas, George
    Alefragis, Panayiotis
    Voros, Nikolaos S.
    Valouxis, Christos
    Derrien, Steven
    Menard, Daniel
    Sentieys, Olivier
    Gogos, Christos
    Huebner, Michael
    Kavvadias, Nikolaos
    Dimitroulakos, Grigoris
    Masselos, Kostas
    Stripf, Timo
    Oey, Oliver
    Becker, Juergen
    Goehringer, Diana
    Rauwerda, Gerard
    Sunesen, Kim
    Kritharidis, Dimitrios
    Mitas, Nikolaos
    2012 INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS (SAMOS): ARCHITECTURES, MODELING AND SIMULATION, 2012, : 268 - 275
  • [46] On the Influence of Static Power Consumption in Multicore Embedded Systems
    Lorenzon, Arthur F.
    Cera, Marcia C.
    Beck, Antonio Carlos S.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1374 - 1377
  • [47] Compiling Scilab to high performance embedded multicore systems
    Stripf, Timo
    Oey, Oliver
    Bruckschloegl, Thomas
    Becker, Juergen
    Rauwerda, Gerard
    Sunesen, Kim
    Goulas, George
    Alefragis, Panayiotis
    Voros, Nikolaos S.
    Derrien, Steven
    Sentieys, Olivier
    Kavvadias, Nikolaos
    Dimitroulakos, Grigoris
    Masselos, Kostas
    Kritharidis, Dimitrios
    Mitas, Nikolaos
    Perschke, Thomas
    MICROPROCESSORS AND MICROSYSTEMS, 2013, 37 (08) : 1033 - 1049
  • [48] An Embedded Parallel Face Detection System Based on Multicore Processor
    Wang, Zheng
    Gao, Fang
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 2684 - 2688
  • [49] Graph Embedded Pose Clustering for Anomaly Detection
    Markovitz, Amir
    Sharir, Gilad
    Friedman, Itamar
    Zelnik-Manor, Lihi
    Avidan, Shai
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 10536 - 10544
  • [50] Anomaly detection based on a parallel kernel RX algorithm for multicore platforms
    Molero, Jose M.
    Garzon, Ester M.
    Garcia, Inmaculada
    Plaza, Antonio
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6