Telecom-Wavelength Quantum Relay Using a Semiconductor Quantum Dot

被引:0
|
作者
Huwer, J. [1 ]
Felle, M. [1 ,2 ]
Stevenson, R. M. [1 ]
Skiba-Szymanska, J. [1 ]
Ward, M. B. [1 ]
Farrer, I. [3 ]
Penty, R. V. [1 ,2 ]
Ritchie, D. A. [3 ]
Shields, A. J. [1 ]
机构
[1] Toshiba Res Europe Ltd, 208 Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Dept Engn, Elect Div, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
关键词
TELEPORTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One promising technology expected to enable long-haul quantum communication networks with untrusted nodes are quantum relays. Their most practical implementation requires an entanglement source with operation at telecom wavelength and intrinsic single photon character. Here, we use a semiconductor quantum dot emitting in the O-band to demonstrate for the first time a system fulfilling both of these criteria. For implementation of a standard 4-state QKD-protocol with weak coherent input states, the system achieves mean fidelities above 88%. Further characterization of the relay with process tomography reveals teleportation for arbitrary input states. The results represent a significant advance in demonstrating feasibility of semiconductor light sources for the development of infrastructure-compatible quantum-communication technology for multi-node networks.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Telecom Wavelength Nanophotonic Elements for Quantum Communication
    Benyoucef, Mohamed
    Reithmaier, Johann Peter
    2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2018, : 77 - 78
  • [42] Telecom-wavelength spectra of a Rydberg state in a hot vapor
    Li, Wenfang
    Du, Jinjin
    Lam, Mark
    Li, Wenhui
    OPTICS LETTERS, 2022, 47 (17) : 4399 - 4402
  • [43] Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence
    Goldmann, Elias
    Barthel, Stefan
    Florian, Matthias
    Schuh, Kolja
    Jahnke, Frank
    APPLIED PHYSICS LETTERS, 2013, 103 (24)
  • [44] Quantum cryptography with the coherent states of a telecom wavelength
    Lodewyck, J.
    Tualle-Brouri, R.
    Debuisschert, T.
    Grangier, P.
    JOURNAL DE PHYSIQUE IV, 2006, 135 : 227 - 228
  • [45] Semiconductor quantum dot lasers
    Ustinov, V
    Zhukov, A
    Egorov, A
    Kovsh, A
    Maleev, N
    Semenova, E
    Maximov, M
    Ledentsov, N
    Alferov, Z
    OPTICAL MATERIALS AND APPLICATIONS, 2005, 5946
  • [46] Semiconductor quantum dot qubits
    M. A. Eriksson
    S. N. Coppersmith
    M. G. Lagally
    MRS Bulletin, 2013, 38 : 794 - 801
  • [47] Quantum dot semiconductor lasers
    Ustinov, VM
    NANOSTRUCTURES: SYNTHESIS, FUNCTIONAL PROPERTIES AND APPLICATIONS, 2003, 128 : 543 - 559
  • [48] Quantum dot semiconductor lasers
    Reithmaier, JP
    Deubert, S
    Somers, A
    Kaiser, W
    Forchel, A
    Auzanneau, S
    Calligaro, M
    Michel, N
    Bansropun, S
    Krakowski, M
    Sumpf, B
    Erbert, G
    Fricke, J
    Tränkle, G
    Alizon, R
    Hadass, D
    Bilenca, A
    Dery, H
    Mikhelashvili, B
    Eisenstein, G
    2004 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2004, : 204 - 205
  • [49] Semiconductor quantum dot qubits
    Eriksson, M. A.
    Coppersmith, S. N.
    Lagally, M. G.
    MRS BULLETIN, 2013, 38 (10) : 794 - 801
  • [50] Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array
    T. Hensgens
    T. Fujita
    L. Janssen
    Xiao Li
    C. J. Van Diepen
    C. Reichl
    W. Wegscheider
    S. Das Sarma
    L. M. K. Vandersypen
    Nature, 2017, 548 : 70 - 73