Hyperbolic domains of determinacy and Hamilton-Jacobi equations

被引:9
|
作者
Joly, JL
Métivier, G
机构
[1] Univ Bordeaux 1, MAB, F-33405 Talence, France
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
domain of influence; domain of independence; finite speed; Hamilton-Jacobi equation; time of arrival;
D O I
10.1142/S0219891605000609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If L(t, x, partial derivative(t), partial derivative(x)) is a linear hyperbolic system of partial differential operators for which local uniqueness in the Cauchy problem at spacelike hypersurfaces is known, we find nearly optimal domains of determinacy of open sets Omega(0) subset of {t= 0). The frozen constant coefficient operators L((t) under bar, (x) under bar, partial derivative(t),partial derivative(x)) determine local convex propagation cones, Gamma(+) ((t) under bar, (x) under bar). Influence curves are curves whose tangent always lies in these cones. We prove that the set of points Omega which cannot be reached by influence curves beginning in the exterior of Omega(0) is a domain of determinacy in the sense that solutions of Lu = 0 whose Cauchy data vanish in Omega(0) must vanish in Omega. We prove that Omega is swept out by continuous spacelike deformations of Omega(0) and is also the set described by maximal solutions of a natural Hamilton-Jacobi equation (HJE). The HJE provides a method for computing approximate domains and is also the bridge from the raylike description using influence curves to that depending on spacelike deformations. The deformations are obtained from level surfaces of mollified solutions of HJEs.
引用
收藏
页码:713 / 744
页数:32
相关论文
共 50 条
  • [11] Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains
    Barth, TJ
    Sethian, JA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) : 1 - 40
  • [12] A Perturbation Problem Involving Singular Perturbations of Domains for Hamilton-Jacobi Equations
    Kumagai, Taiga
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 377 - 427
  • [13] Homogenization of Hamilton-Jacobi equations on domains with small scale periodic structure
    Horie, K
    Ishii, H
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1998, 47 (03) : 1011 - 1058
  • [14] State-constraint static Hamilton-Jacobi equations in nested domains
    Kim, Yeoneung
    Tran, Hung V.
    Tu, Son N.
    SIAM Journal on Mathematical Analysis, 2020, 52 (05): : 4161 - 4184
  • [15] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [16] Hamilton-Jacobi equations in evolutionary games
    Krasovskiy, N. A.
    Kryazhimskiy, A. V.
    Tarasyev, A. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 114 - 131
  • [17] Minimax solutions to the Hamilton-Jacobi equations
    Subbotin A.I.
    Journal of Mathematical Sciences, 2001, 103 (6) : 772 - 777
  • [18] Hamilton-Jacobi Equations on Graph and Applications
    Yan Shu
    Potential Analysis, 2018, 48 : 125 - 157
  • [19] Hypercontractivity of solutions to Hamilton-Jacobi equations
    Goldys, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 733 - 743
  • [20] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31