Melting curves and entropy of fusion of body-centered cubic tungsten under pressure

被引:41
|
作者
Liu, Chun-Mei [1 ]
Chen, Xiang-Rong [1 ,2 ]
Xu, Chao [1 ]
Cai, Ling-Cang [3 ]
Jing, Fu-Qian [3 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610064, Peoples R China
[2] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China
[3] CAEP, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
X-RAY-DIFFRACTION; EQUATION-OF-STATE; MOLECULAR-DYNAMICS; ELASTIC-CONSTANTS; STATISTICAL ENSEMBLES; MO; TA; TRANSITION; METALS; TANTALUM;
D O I
10.1063/1.4733947
中图分类号
O59 [应用物理学];
学科分类号
摘要
The melting curves and entropy of fusion of body-centered cubic (bcc) tungsten (W) under pressure are investigated via molecular dynamics (MD) simulations with extended Finnis-Sinclair (EFS) potential. The zero pressure melting point obtained is better than other theoretical results by MD simulations with the embedded-atom-method (EAM), Finnis-Sinclair (FS) and modified EAM potentials, and by ab initio MD simulations. Our radial distribution function and running coordination number analyses indicate that apart from the expected increase in disorder, the main change on going from solid to liquid is thus a slight decrease in coordination number. Our entropy of fusion of W during melting, Delta S, at zero pressure, 7.619 J/mol.K, is in good agreement with the experimental and other theoretical data. We found that, with the increasing pressure, the entropy of fusion Delta S decreases fast first and then oscillates with pressure; when the pressure is higher than 100 GPa, the entropy of fusion Delta S is about 6.575 +/- 0.086 J/mol.K, which shows less pressure effect. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733947]
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Analysis of the deformation mechanism and mechanical properties of graded body-centered cubic nested body-centered cubic lattice material
    Wang RunZhou
    Zhang Yue
    Li ShiQiang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (04)
  • [22] Molecular dynamics simulation of symmetrical tilt grain boundary of body-centered cubic tungsten
    Liang C.-P.
    Wang W.-Q.
    Tang S.
    Liu W.-S.
    Ma Y.-Z.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2021, 31 (07): : 1757 - 1766
  • [23] Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten
    Xu, Shuozhi
    Startt, Jacob K.
    Payne, Thomas G.
    Deo, Chaitanya S.
    McDowell, David L.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (17)
  • [24] Synthesis of body-centered cubic carbon nanocrystals
    Liu, P.
    Cui, H.
    Yang, G. W.
    CRYSTAL GROWTH & DESIGN, 2008, 8 (02) : 581 - 586
  • [25] FREQUENCY SPECTRA OF BODY-CENTERED CUBIC LATTICES
    CLARK, BC
    WALLIS, RF
    GAZIS, DC
    PHYSICAL REVIEW, 1964, 134 (6A): : 1486 - +
  • [26] COUPLING COEFFICIENTS FOR BODY-CENTERED CUBIC SOLIDS
    GARG, PK
    GUPTA, NP
    JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (01): : 558 - 558
  • [27] MOBILITY OF DISLOCATIONS IN BODY-CENTERED CUBIC METALS
    KROUPA, F
    SESTAK, B
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1977, 27 (04): : 342 - 353
  • [28] MAGNETIC PHASES OF BODY-CENTERED CUBIC MANGANESE
    SLIWKO, VL
    BLAHA, P
    MOHN, P
    SCHWARZ, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (1-3): : 614 - 617
  • [29] VACANCY RELAXATION IN BODY-CENTERED CUBIC METALS
    GRIMES, HH
    RICE, JH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (07): : 958 - &
  • [30] SURFACE ORDER IN BODY-CENTERED CUBIC ALLOYS
    SCHMID, F
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 91 (01): : 77 - 91