Binomial moments of the distance distribution and the probability of undetected error

被引:10
|
作者
Barg, A
Ashikhmin, A
机构
[1] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
[2] Los Alamos Natl Lab, Grp CIC 3, Los Alamos, NM 87545 USA
关键词
distance distribution; binomial moments; rank generating function; undetected error;
D O I
10.1023/A:1008382528138
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In [1] K. A. S. Abdel-Ghaffar derives a lower bound on the probability of undetected error for unrestricted codes. The proof relies implicitly on the binomial moments of the distance distribution of the code. We use the fact that these moments count the size of subcodes of the code to give a very simple proof of the bound in [1] by showing that it is essentially equivalent to the Singleton bound. This proof reveals connections of the probability of undetected error to the rank generating function of the code and to related polynomials (Whitney function, Tutte polynomial, and higher weight enumerators). We also discuss some improvements of this bound. Finally, we analyze asymptotics. We show that an upper bound on the undetected error exponent that corresponds to the bound of [1] improves known bounds on this function.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条
  • [41] The probability of undetected error for Varshamov-Tenengol'ts codes
    Chiaraluce, Franco
    Baldi, Marco
    Spinsante, Susanna
    Klove, Torleiv
    2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 1119 - +
  • [42] The probability of undetected error can have several local maxima
    Honkala, IS
    Laihonen, TK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2537 - 2539
  • [43] PROBABILITY OF UNDETECTED ERROR FOR DIGITAL PULSE DURATION MODULATION (DPCM)
    GROTH, G
    NACHRICHTENTECHNISCHE ZEITSCHRIFT, 1975, 28 (10): : 338 - 343
  • [44] A lower bound on the undetected error probability and strictly optimal codes
    AbdelGhaffar, KAS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (05) : 1489 - 1502
  • [45] On the probability of undetected error for overextended Reed-Solomon codes
    Han, Junsheng
    Siegel, Paul H.
    Lee, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) : 3662 - 3669
  • [46] On the undetected error probability of linear block codes on channels with memory
    Kuznetsov, A
    Swarts, F
    Vinck, AJH
    Ferreira, HC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 303 - 309
  • [47] Negative Binomial Distribution and the multiplicity moments at the LHC
    Praszalowicz, Michal
    PHYSICS LETTERS B, 2011, 704 (05) : 566 - 569
  • [48] A REPRESENTATION OF A DISCRETE DISTRIBUTION BY ITS BINOMIAL MOMENTS
    BRANDT, A
    BRANDT, M
    SULANKE, H
    JOURNAL OF APPLIED PROBABILITY, 1990, 27 (01) : 208 - 214
  • [49] Bounds on the Probability of Undetected Error for q-Ary Codes
    Wang, Xuan
    Liu, Huizhou
    Sole, Patrick
    ENTROPY, 2023, 25 (09)
  • [50] Error probability evaluation with a limited number of moments
    Rodrigues, MRD
    Mitchell, JE
    Darwazeh, I
    O'Reilly, JJ
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 9 - 9