ADDITIVE SET OF IDEMPOTENTS IN RINGS

被引:3
|
作者
Han, Juncheol [2 ]
Park, Sangwon [1 ]
机构
[1] Dong A Univ, Dept Math, Pusan 609735, South Korea
[2] Pusan Natl Univ, Dept Math Educ, Pusan 609735, South Korea
关键词
Connected ring; Fully basic ring; Primitive idempotents; MULTIPLICATIVE SETS;
D O I
10.1080/00927872.2011.591862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, f is an element of I(R) (e not equal f), e + f is an element of I(R), and M(R) is additive in I(R) if for all e, f is an element of M(R) (e not equal f), e + f is an element of I(R). In this article, the following points are shown: (1) I(R) is additive if and only if I(R) is multiplicative and the characteristic of R is 2; M(R) is additive in I(R) if and only if M(R) is orthogonal. If 0 not equal ef is an element of I(R) for some e is an element of M(R) and f is an element of I(R), then ef is an element of M(R), (2) If R has a complete set of primitive idempotents, then R is a finite product of connected rings if and only if I(R) is multiplicative if and only if M(R)is additive in I(R).
引用
收藏
页码:3551 / 3557
页数:7
相关论文
共 50 条
  • [31] On idempotents of a class of commutative rings
    de Melo Hernandez, Fernanda D.
    Hernandez Melo, Cesar A.
    Tapia-Recillas, Horacio
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 4013 - 4026
  • [32] Idempotents in group seminear rings
    Vasantha, Kandasamy, W.B.
    IPB Buletin Stiintific - Mechanical Engineering, 1991, 53 (1-2):
  • [33] RIGHT ALTERNATIVE RINGS WITH IDEMPOTENTS
    HENTZEL, IR
    JOURNAL OF ALGEBRA, 1971, 17 (03) : 303 - &
  • [34] IDEMPOTENTS IN MATRIX-RINGS
    BARNETT, C
    CAMILLO, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (04) : 965 - 969
  • [35] Primitive Idempotents of Schur Rings
    Andrew Misseldine
    Algebras and Representation Theory, 2014, 17 : 1615 - 1634
  • [36] ON SEMI-IDEMPOTENTS IN RINGS
    JINNAH, MI
    KANNAN, B
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1986, 62 (06) : 211 - 212
  • [37] Peirce decompositions, idempotents and rings
    Anh, Pham N.
    Birkenmeier, Gary F.
    van Wyk, Leon
    JOURNAL OF ALGEBRA, 2020, 564 : 247 - 275
  • [38] IDEMPOTENTS IN POLYNOMIAL-RINGS
    KAMAL, AAM
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) : 355 - 363
  • [39] Semicommutativity of Rings by the Way of Idempotents
    Kose, Handan
    Ungor, Burcu
    Harmanci, Abdullah
    FILOMAT, 2019, 33 (11) : 3497 - 3508
  • [40] On rings determined by their idempotents and units
    Cetin, Mirac
    Kosan, M. Tamer
    Zemlicka, Jan
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) : 2820 - 2829