Quasi-interpolation in Riemannian manifolds

被引:20
|
作者
Grohs, Philipp [1 ]
机构
[1] ETH, Seminar Appl Math, CH-8004 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Quasiinterpolation; Riemannian Data; Geodesic Finite Elements; Approximation Order; Riemannian Center of Mass; SUBDIVISION; SMOOTHNESS;
D O I
10.1093/imanum/drs026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasi-interpolation operators for functions assuming their values in a Riemannian manifold. We construct such operators from corresponding linear quasi-interpolation operators by replacing affine averages with the Riemannian centre of mass. As a main result, we show that the approximation rate of such a nonlinear operator is the same as for the linear operator it has been derived from. In order to formulate this result in an intrinsic way, we use the Sasaki metric to compare the derivatives of the function to be approximated with the derivatives of the nonlinear approximant. Numerical experiments confirm our theoretical findings.
引用
收藏
页码:849 / 874
页数:26
相关论文
共 50 条
  • [41] Optimal control on Riemannian manifolds by interpolation
    Giambò, R
    Giannoni, F
    Piccione, P
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2004, 16 (04) : 278 - 296
  • [42] Multi-level hermite variational interpolation and quasi-interpolation
    Liu, Shengjun
    Brunnett, Guido
    Wang, Jun
    VISUAL COMPUTER, 2013, 29 (6-8): : 627 - 637
  • [43] An iterated quasi-interpolation approach for derivative approximation
    Zhengjie Sun
    Zongmin Wu
    Wenwu Gao
    Numerical Algorithms, 2020, 85 : 255 - 276
  • [44] Error estimates of quasi-interpolation and its derivatives
    Chen, Zhixiang
    Cao, Feilong
    Hu, Jinjie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (13) : 3137 - 3146
  • [45] An iterated quasi-interpolation approach for derivative approximation
    Sun, Zhengjie
    Wu, Zongmin
    Gao, Wenwu
    NUMERICAL ALGORITHMS, 2020, 85 (01) : 255 - 276
  • [46] Multilevel Quasi-Interpolation on Chebyshev Sparse Grids
    Alsharif, Faisal
    COMPUTATION, 2024, 12 (07)
  • [47] Quadrature-free quasi-interpolation on the sphere
    Ganesh, M.
    Mhaskar, H. N.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 25 : 101 - 114
  • [48] CONVERGENCE OF UNIVARIATE QUASI-INTERPOLATION USING MULTIQUADRICS
    BUHMANN, MD
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (03) : 365 - 383
  • [50] Constrained trajectory synthesis via quasi-interpolation
    Ganguly, Siddhartha
    Randad, Nakul
    Chatterjee, Debasish
    Banavar, Ravi
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4533 - 4538