On a class of third-order nonlocal Hamiltonian operators

被引:6
|
作者
Casati, M. [1 ]
Ferapontov, E. V. [1 ]
Pavlov, M. V. [2 ]
Vitolo, R. F. [3 ,4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow, Russia
[3] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
[4] Ist Nazl Fis Nucl, Sect Lecce, Lecce, Italy
关键词
Nonlocal Hamiltonian operator; Monge metric; Dirac reduction; Poisson vertex algebra; POISSON STRUCTURES; EQUATIONS; ASSOCIATIVITY; BRACKETS;
D O I
10.1016/j.geomphys.2018.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge metric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条