Plane-Selective Coating of Li2SnO3 on Li[NixCo1-x]O2 for High Power Li ion Batteries

被引:6
|
作者
Kim, Hanseul [1 ]
Choi, Garam [1 ]
Kim, Seongmin [1 ]
Lee, Donghoon [1 ,2 ]
Doo, Sung Wook [1 ]
Park, Jungwon [1 ,2 ]
Lee, Won Bo [1 ]
Lee, Kyu Tae [1 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, Inst Chem Proc, Seoul 08826, South Korea
[2] Inst Basic Sci IBS, Ctr Nanoparticle Res, Seoul 08826, South Korea
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 17期
基金
新加坡国家研究基金会;
关键词
ATOMIC LAYER DEPOSITION; TRANSITION-METAL DISSOLUTION; CATHODE MATERIALS; LITHIUM; LICOO2; PERFORMANCE; PASSIVATION; REDUCTION; STABILITY; EVOLUTION;
D O I
10.1021/acs.jpclett.0c01829
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interphase engineering is becoming increasingly important in improving the electrochemical performance of cathode materials for rechargeable batteries, including Li ion, Li metal, and all-solid-state batteries, because irreversible surface reactions, such as electrolyte decomposition, and transition metal dissolution, constitute one of these batteries' failure modes. In this connection, various surface-engineered cathode materials have been investigated to improve interfacial properties. No synthesis methods, however, have considered a plane-selective surface modification of cathode materials. Herein, we introduce the basal-plane-selective coating of Li2SnO3 on layered Li[NixCo1-x]O-2 (x = 0 and 0.5) using the concept of the thermal phase segregation of Sn-doped Li[NixCo1-x]O-2 due to the solubility variation of Sn in Li[NixCo1-x]O-2 with respect to temperature. The plane-selective surface modification enables the formation of Li2SnO3 nanolayers on only the Li[NixCo1-x]O-2 basal plane without hindering the charge transfer of Li+ ions. As a result, the vertical heterostructure of Li[NixCo1-x]O-2-Li2SnO3 core-shells show promising electrochemical performance.
引用
收藏
页码:7096 / 7102
页数:7
相关论文
共 50 条
  • [21] Layered manganese oxide with O2 structure, Li(2/3)+x(Ni1/3Mn2/3)O2 as cathode for Li-ion batteries
    Shaju, KM
    Rao, GVS
    Chowdari, BVR
    ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) : 633 - 638
  • [22] Probing cation intermixing in Li2SnO3
    Wang, Zhong
    Ren, Yang
    Ma, Tianyuan
    Zhuang, Weidong
    Lu, Shigang
    Xu, Guiliang
    Abouimrane, Ali
    Amine, Khalil
    Chen, Zonghai
    RSC ADVANCES, 2016, 6 (37): : 31559 - 31564
  • [23] Erratum: Li–O2 and Li–S batteries with high energy storage
    Peter G. Bruce
    Stefan A. Freunberger
    Laurence J. Hardwick
    Jean-Marie Tarascon
    Nature Materials, 2012, 11 (2) : 172 - 172
  • [24] Morphology and Safety of Li[NixCo1-2xMnx]O2 (0 ≤ x ≤ 1/2)
    Jouanneau, S
    MacNeil, DD
    Lu, Z
    Beattie, SD
    Murphy, G
    Dahn, JR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) : A1299 - A1304
  • [25] NEUTRON PROFILE REFINEMENT OF THE STRUCTURES OF LI2SNO3 AND LI2ZRO3
    HODEAU, JL
    MAREZIO, M
    SANTORO, A
    ROTH, RS
    JOURNAL OF SOLID STATE CHEMISTRY, 1982, 45 (02) : 170 - 179
  • [26] Conductivity and dielectric studies of Li2SnO3
    L. P. Teo
    M. H. Buraidah
    A. F. M. Nor
    S. R. Majid
    Ionics, 2012, 18 : 655 - 665
  • [27] Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2)
    MacNeil, DD
    Lu, Z
    Dahn, JR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) : A1332 - A1336
  • [28] Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques
    Teo, L. P.
    Buraidah, M. H.
    Arof, A. K.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2019, 694 (01) : 117 - 130
  • [29] VIBRATIONAL-SPECTRA OF DOUBLE OXIDES LI2SNO3 AND LI2TIO3
    POROTNIKOV, NV
    CHABAN, NG
    PETROV, KI
    ZHURNAL NEORGANICHESKOI KHIMII, 1983, 28 (10): : 2466 - 2468
  • [30] INTERPRETATION OF OSCILLATING SPECTRA OF LI2TIO3 AND LI2SNO3 BINARY OXIDES
    GOLUBEVA, LV
    POROTNIKOV, NV
    KONDRATOV, OI
    PETROV, KI
    ZHURNAL NEORGANICHESKOI KHIMII, 1990, 35 (07): : 1804 - 1809