Testing the covariance function of stationary Gaussian random fields

被引:5
|
作者
Taheriyoun, Ali Reza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran 1983963113, Iran
关键词
Differential topology; Euler characteristic; Gaussian random fields; Periodogram; Stationarity; ASYMPTOTIC PROPERTIES; PERIODOGRAM;
D O I
10.1016/j.spl.2011.11.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many problems, a specific function like h(center dot) is considered as the covariance function. Based on the asymptotic distribution of the periodogram and Euler characteristic, three methods are introduced to test the equality of the covariance function with h(center dot). Our analyses prove the accuracy of the power and scaling laws for the covariance function of metal surfaces. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:606 / 613
页数:8
相关论文
共 50 条
  • [31] STATIONARY LOCAL ADDITIVE-FUNCTIONALS OF GAUSSIAN RANDOM-FIELDS
    DOBRUSHIN, RL
    KELBERT, MY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1984, 28 (03) : 515 - 529
  • [32] The moduli of non-differentiability for Gaussian random fields with stationary increments
    Wang, Wensheng
    Su, Zhonggen
    Xiao, Yimin
    BERNOULLI, 2020, 26 (02) : 1410 - 1430
  • [33] The Shkarofsky-Gneiting class of covariance models for bivariate Gaussian random fields
    Porcu, Emilio
    Bevilacqua, Moreno
    Hering, Amanda S.
    STAT, 2018, 7 (01):
  • [34] Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere
    Alegria, A.
    Caro, S.
    Bevilacqua, M.
    Porcu, E.
    Clarke, J.
    SPATIAL STATISTICS, 2017, 22 : 388 - 402
  • [35] Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction
    Harbrecht, Helmut
    Herrmann, Lukas
    Kirchner, Kristin
    Schwab, Christoph
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [36] Phase correlation function of complex random Gaussian fields
    Maksimov, D. N.
    Sadreev, A. F.
    EPL, 2007, 80 (05)
  • [37] Testing the correctness of the sequential algorithm for simulating Gaussian random fields
    X. Emery
    Stochastic Environmental Research and Risk Assessment, 2004, 18 : 401 - 413
  • [38] Testing the correctness of the sequential algorithm for simulating Gaussian random fields
    Emery, X
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2004, 18 (06) : 401 - 413
  • [39] Distance covariance for random fields
    Matsui, Muneya
    Mikosch, Thomas
    Roozegar, Rasool
    Tafakori, Laleh
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 150 : 280 - 322
  • [40] Almost sure asymptotics for extremes of non-stationary Gaussian random fields
    Tan, Zhongquan
    Wang, Yuebao
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 125 - 138