On magnetic reconnection and flux rope topology in solar flux emergence

被引:24
|
作者
MacTaggart, D. [1 ]
Haynes, A. L. [2 ]
机构
[1] Univ Abertay Dundee, Dundee DD1 1HG, Scotland
[2] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
关键词
magnetic fields; magnetic reconnection; MHD; Sun: coronal mass ejections (CMEs); Sun: magnetic topology; CORONAL MASS EJECTIONS; MODEL; SIMULATIONS; MECHANISM; ERUPTIONS; INSTABILITY; ATMOSPHERE; HELICITY; BREAKOUT; ENERGY;
D O I
10.1093/mnras/stt2285
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an analysis of the formation of atmospheric flux ropes in a magnetohydrodynamic solar flux emergence simulation. The simulation domain ranges from the top of the solar interior to the low corona. A twisted magnetic flux tube emerges from the solar interior and into the atmosphere where it interacts with the ambient magnetic field. By studying the connectivity of the evolving magnetic field, we are able to better understand the process of flux rope formation in the solar atmosphere. In the simulation, two flux ropes are produced as a result of flux emergence. Each has a different evolution resulting in different topological structures. These are determined by plasma flows and magnetic reconnection. As the flux rope is the basic structure of the coronal mass ejection, we discuss the implications of our findings for solar eruptions.
引用
收藏
页码:1500 / 1506
页数:7
相关论文
共 50 条
  • [31] FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION
    Toeroek, T.
    Chandra, R.
    Pariat, E.
    Demoulin, P.
    Schmieder, B.
    Aulanier, G.
    Linton, M. G.
    Mandrini, C. H.
    ASTROPHYSICAL JOURNAL, 2011, 728 (01):
  • [32] The Magnetic Flux Rope Structure of a Triangulated Solar Filament
    Guo, Yang
    Xu, Yu
    Ding, M. D.
    Chen, P. F.
    Xia, Chun
    Keppens, Rony
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 884 (01)
  • [33] Origin and structures of solar eruptions Ⅰ: Magnetic flux rope
    CHENG Xin
    GUO Yang
    DING MingDe
    ScienceChina(EarthSciences), 2017, 60 (08) : 1383 - 1407
  • [34] Multiple flux rope magnetic ejecta in the solar wind
    Hu, Q
    Smith, CW
    Ness, NF
    Skoug, RM
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A3) : A03102
  • [35] Laboratory simulation of solar magnetic flux rope eruptions
    Tripathi, S. K. P.
    Gekelman, W.
    PHYSICS OF SUN AND STAR SPOTS, 2011, (273): : 483 - 486
  • [36] Magnetic Disconnections at the Boundary of a Small Interplanetary Magnetic Flux Rope Associated with a Reconnection Exhaust
    JieMin Wang
    Qiang Liu
    Yan Zhao
    Solar Physics, 2018, 293
  • [37] Magnetic Disconnections at the Boundary of a Small Interplanetary Magnetic Flux Rope Associated with a Reconnection Exhaust
    Wang, JieMin
    Liu, Qiang
    Zhao, Yan
    SOLAR PHYSICS, 2018, 293 (08)
  • [38] Magnetic reconnection resulting from flux emergence: implications for jet formation in the lower solar atmosphere?
    Ding, J. Y.
    Madjarska, M. S.
    Doyle, J. G.
    Lu, Q. M.
    Vanninathan, K.
    Huang, Z.
    ASTRONOMY & ASTROPHYSICS, 2011, 535
  • [39] Coronal flux rope catastrophe caused by photospheric flux emergence
    Ding, J. Y.
    Hu, Y. Q.
    ASTROPHYSICAL JOURNAL, 2008, 674 (01): : 554 - 559
  • [40] Flux emergence, flux imbalance, magnetic free energy and solar flares
    Choudhary, Debi Prasad
    Gosain, Sanjay
    Gopalswamy, Nat
    Manoharan, P. K.
    Chandra, R.
    Uddin, W.
    Srivastava, A. K.
    Yashiro, S.
    Joshi, N. C.
    Kayshap, P.
    Dwivedi, V. C.
    Mahalakshmi, K.
    Elamathi, E.
    Norris, Max
    Awasthi, A. K.
    Jain, R.
    ADVANCES IN SPACE RESEARCH, 2013, 52 (08) : 1561 - 1566