Adaptive nonparametric density estimation with missing observations

被引:4
|
作者
Efromovich, Sam [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
MISE; MAR; Oracle inequality; REGRESSION; KERNEL;
D O I
10.1016/j.jspi.2012.10.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that if some observations in a sample from the probability density are not available, then in general the density cannot be estimated. A possible remedy is to use an auxiliary variable that explains the missing mechanism. For this setting a data-driven estimator is proposed that mimics performance of an oracle that knows all observations from the sample. It is also proved that the estimator adapts to unknown smoothness of the density and its mean integrated squared error converges with a minimax rate. A numerical study, together with the analysis of a real data, shows that the estimator is feasible for small samples. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 50 条
  • [31] Missing-Data Nonparametric Coherency Estimation
    Haley, C.
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1704 - 1708
  • [32] Nonparametric variance function estimation with missing data
    Perez-Gonzalez, A.
    Vilar-Fernandez, J. M.
    Gonzalez-Manteiga, W.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (05) : 1123 - 1142
  • [33] Nonparametric estimation of a conditional density
    Bott, Ann-Kathrin
    Kohler, Michael
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (01) : 189 - 214
  • [34] Nonparametric density and regression estimation
    DiNardo, J
    Tobias, JL
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 11 - 28
  • [35] SEQUENTIAL NONPARAMETRIC DENSITY ESTIMATION
    DAVIES, HI
    WEGMAN, EJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (06) : 619 - 628
  • [36] The bootstrap in nonparametric density estimation
    Mihoubi, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (11): : 1517 - 1520
  • [37] Nonparametric estimation of a bispectral density
    Alekseev, VG
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2001, 37 (01) : 21 - 26
  • [38] Nonparametric estimation of a conditional density
    Ann-Kathrin Bott
    Michael Kohler
    Annals of the Institute of Statistical Mathematics, 2017, 69 : 189 - 214
  • [39] Nonparametric volatility density estimation
    Van Es, B
    Spreij, P
    Van Zanten, H
    BERNOULLI, 2003, 9 (03) : 451 - 465
  • [40] On nonparametric density estimation at the boundary
    Zhang, SP
    Karunamuni, RJ
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (02) : 197 - 221