Dielectrophoretic Rayleigh-Benard convection under microgravity conditions

被引:29
|
作者
Yoshikawa, H. N. [1 ]
Fogaing, M. Tadie [1 ]
Crumeyrolle, O. [1 ]
Mutabazi, I. [1 ]
机构
[1] Univ Havre, UMR CNRS 6294, Lab Ondes & Milieux Complexes, F-76058 Le Havre, France
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
STABILITY;
D O I
10.1103/PhysRevE.87.043003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Benard (RB) convection is examined by considering its behavior in detail by a linear stability theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection as a consequence of the feedback that impedes the convection. DOI: 10.1103/PhysRevE.87.043003
引用
收藏
页数:7
相关论文
共 50 条
  • [21] ON ULTIMATE REGIME OF RAYLEIGH-BENARD CONVECTION
    Palymskiy, Igor
    COMPUTATIONAL THERMAL SCIENCES, 2015, 7 (04): : 339 - 344
  • [22] Effect of inertia in Rayleigh-Benard convection
    Breuer, M
    Wessling, S
    Schmalzl, J
    Hansen, U
    PHYSICAL REVIEW E, 2004, 69 (02): : 026302 - 1
  • [23] Rayleigh-Benard convection with a melting boundary
    Favier, B.
    Purseed, J.
    Duchemin, L.
    JOURNAL OF FLUID MECHANICS, 2019, 858 : 437 - 473
  • [24] PATTERN FORMATION IN RAYLEIGH-BENARD CONVECTION
    Sengul, Taylan
    Wang, Shouhong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (01) : 315 - 343
  • [25] SPATIOTEMPORAL INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    CILIBERTO, S
    BIGAZZI, P
    PHYSICAL REVIEW LETTERS, 1988, 60 (04) : 286 - 289
  • [26] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [27] TEMPERATURE MODULATION IN RAYLEIGH-BENARD CONVECTION
    Singh, Jitender
    Bajaj, Renu
    ANZIAM JOURNAL, 2008, 50 (02): : 231 - 245
  • [28] EXTERNAL MODULATION OF RAYLEIGH-BENARD CONVECTION
    NIEMELA, JJ
    DONNELLY, RJ
    PHYSICAL REVIEW LETTERS, 1987, 59 (21) : 2431 - 2434
  • [29] SURFACE DEFLECTION IN RAYLEIGH-BENARD CONVECTION
    JIMENEZFERNANDEZ, J
    GARCIASANZ, J
    JOURNAL DE PHYSIQUE, 1989, 50 (05): : 521 - 527
  • [30] Turbulent Rayleigh-Benard convection under strong non-Oberbeck-Boussinesq conditions
    Yik, Hiufai
    Valori, Valentina
    Weiss, Stephan
    PHYSICAL REVIEW FLUIDS, 2020, 5 (10)