Richardson elements for classical Lie algebras

被引:12
|
作者
Baur, K [1 ]
机构
[1] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
关键词
D O I
10.1016/j.jalgebra.2005.03.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parabolic subalgebras of semi-simple Lie algebras decompose as p = m circle plus n where m is a Levi factor and n the corresponding nilradical. By Richardson's theorem [R.W Richardson, Bull. London Math. Soc. 6 (1974) 21-24], there exists an open orbit under the action of the adjoint group P on the nilradical. The elements of this dense orbits are known as Richardson elements. In this paper we describe a normal form for Richardson elements in the classical case. This generalizes a construction for gl(N) of Briistle et al. [Algebr. Represent. Theory 2 (1999) 295-312] to the other classical Lie algebra and it extends the authors normal forms of Richardson elements for nice parabolic subalgebras of simple Lie algebras to arbitrary parabolic subalgebras of the classical Lie algebras [K. Baur, Represent. Theory 9 (2005) 30-45]. As applications we obtain a description of the support of Richardson elements and we recover the Bala-Carter label of the orbit of Richardson elements. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 185
页数:18
相关论文
共 50 条
  • [41] Lie superalgebras and second order automorphisms of classical Lie algebras
    Patera, J
    Perena, CM
    Rodriguez, MA
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 198 - 202
  • [42] Lie algebras generated by extremal elements
    Cohen, AM
    Steinbach, A
    Ushirobira, R
    Wales, D
    JOURNAL OF ALGEBRA, 2001, 236 (01) : 122 - 154
  • [43] Cyclic elements in semisimple lie algebras
    Elashvili, A. G.
    Kac, V. G.
    Vinberg, E. B.
    TRANSFORMATION GROUPS, 2013, 18 (01) : 97 - 130
  • [44] NILPOTENT ELEMENTS IN LIE-ALGEBRAS
    KAPLANSKY, I
    JOURNAL OF ALGEBRA, 1990, 133 (02) : 467 - 471
  • [45] Capelli elements for the orthogonal Lie algebras
    Itoh, M
    JOURNAL OF LIE THEORY, 2000, 10 (02) : 463 - 489
  • [46] Cyclic elements in semisimple lie algebras
    A. G. Elashvili
    V. G. Kac
    E. B. Vinberg
    Transformation Groups, 2013, 18 : 97 - 130
  • [47] CLASSICAL-GROUPS AND CLASSICAL LIE-ALGEBRAS OF OPERATORS
    DELAHARPE, P
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1982, 38 : 477 - 513
  • [48] Fine gradings on simple classical Lie algebras
    Elduque, Alberto
    JOURNAL OF ALGEBRA, 2010, 324 (12) : 3532 - 3571
  • [49] Character Sheaves for Classical Graded Lie Algebras
    Ting XUE
    Acta Mathematica Sinica,English Series, 2024, (03) : 870 - 884
  • [50] Character Sheaves for Classical Graded Lie Algebras
    Ting Xue
    Acta Mathematica Sinica, English Series, 2024, 40 : 870 - 884