Electrically driven single-electron spin resonance in a slanting Zeeman field

被引:490
|
作者
Pioro-Ladriere, M. [1 ,2 ]
Obata, T. [1 ]
Tokura, Y. [1 ,2 ]
Shin, Y. -S. [1 ]
Kubo, T. [1 ]
Yoshida, K. [1 ]
Taniyama, T. [3 ,4 ]
Tarucha, S. [1 ,5 ,6 ]
机构
[1] Japan Sci & Technol Agcy, ICORP, Quantum Spin Informat Project, Atsugi, Kanagawa 2430198, Japan
[2] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[3] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan
[4] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[6] Univ Tokyo, Inst Nano Quantum Informat Elect, Meguro Ku, Tokyo 1538505, Japan
关键词
D O I
10.1038/nphys1053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The rapid rise of spintronics and quantum information science has led to a strong interest in developing the ability to coherently manipulate electron spins(1). Electron spin resonance(2) is a powerful technique for manipulating spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins(3-5). In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields(6,7). Here we report experiments in which electrically driven addressable spin rotations on two individual electrons were realized by integrating a micrometre-size ferromagnet into a double-quantum-dot device. We find that it is the stray magnetic field of the micromagnet that enables the electrical control and spin selectivity. The results suggest that our approach can be tailored to multidot architecture and therefore could open an avenue towards manipulating electron spins electrically in a scalable way.
引用
收藏
页码:776 / 779
页数:4
相关论文
共 50 条
  • [31] Spin effects in ferromagnetic single-electron transistors
    Barnas, J
    Martinek, J
    Michalek, G
    Bulka, BR
    Fert, A
    PHYSICAL REVIEW B, 2000, 62 (18) : 12363 - 12373
  • [32] Single-electron solitons in magnetic field
    Rudenko, M.
    Svintsov, D.
    Filippov, S.
    Vyurkov, V.
    INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2016, 2016, 10224
  • [33] Spin injection in ferromagnetic single-electron transistor
    Korotkov, AN
    Safarov, VI
    SUPERLATTICES AND MICROSTRUCTURES, 1999, 25 (1-2) : 259 - 262
  • [34] On modeling and visualizing single-electron spin motion
    Yang, Ciann-Dong
    CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 41 - 50
  • [35] Nonequilibrium spin distribution in a single-electron transistor
    Korotkov, AN
    Safarov, VI
    PHYSICAL REVIEW B, 1999, 59 (01): : 89 - 92
  • [36] Spin accumulation in ferromagnetic single-electron transistors
    Martinek, J
    Barnas, J
    Maekawa, S
    Schoeller, H
    Schön, G
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3): : 54 - 55
  • [37] Extreme Harmonic Generation in Electrically Driven Spin Resonance
    Stehlik, J.
    Schroer, M. D.
    Maialle, M. Z.
    Degani, M. H.
    Petta, J. R.
    PHYSICAL REVIEW LETTERS, 2014, 112 (22)
  • [38] Ultrasonically driven nanomechanical single-electron shuttle
    Koenig, Daniel R.
    Weig, Eva M.
    Kotthaus, Jorg P.
    NATURE NANOTECHNOLOGY, 2008, 3 (08) : 482 - 485
  • [39] Multilevel memory using an electrically formed single-electron box
    Nishiguchi, K
    Inokawa, H
    Ono, Y
    Fujiwara, A
    Takahashi, Y
    APPLIED PHYSICS LETTERS, 2004, 85 (07) : 1277 - 1279
  • [40] Ultrasonically driven nanomechanical single-electron shuttle
    Daniel R. Koenig
    Eva M. Weig
    Jorg P. Kotthaus
    Nature Nanotechnology, 2008, 3 : 482 - 485