REGULARITY OF RANDOM ATTRACTORS FOR STOCHASTIC SEMILINEAR DEGENERATE PARABOLIC EQUATIONS

被引:0
|
作者
Cung The Anh [1 ]
Tang Quoc Bao [2 ]
Nguyen Van Thanh [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[3] Hanoi Natl Univ, Foreign Languages Specialized Sch, Univ Languages & Int Studies, Hanoi, Vietnam
关键词
Random dynamical systems; random attractors; regularity; stochastic degenerate parabolic equations; asymptotic a priori estimate method; REACTION-DIFFUSION EQUATIONS; RANDOM DYNAMICAL-SYSTEMS; GLOBAL ATTRACTORS; UNBOUNDED-DOMAINS; EXISTENCE; CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stochastic semilinear degenerate parabolic equation du + [-div(sigma(x)del u) + f(u) + lambda u] dt = gdt + Sigma(m)(j=1) h(j)d omega(j) in a bounded domain O subset of R-N, with the nonlinearity satisfies an arbitrary polynomial growth condition. The random dynamical system generated by the equation is shown to have a random attractor {A(omega)}omega is an element of Omega in D-0(1) (O, sigma) boolean AND L-p(O). The results obtained improve some recent ones for stochastic semilinear degenerate parabolic equations.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Boundary regularity for degenerate and singular parabolic equations
    Anders Björn
    Jana Björn
    Ugo Gianazza
    Mikko Parviainen
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 797 - 827
  • [32] Random attractors via pathwise mild solutions for stochastic parabolic evolution equations
    Kuehn, Christian
    Neamtu, Alexandra
    Sonner, Stefanie
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2631 - 2663
  • [33] Random attractors via pathwise mild solutions for stochastic parabolic evolution equations
    Christian Kuehn
    Alexandra Neamţu
    Stefanie Sonner
    Journal of Evolution Equations, 2021, 21 : 2631 - 2663
  • [34] PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION
    Li, Xin
    Sun, Chunyou
    Zhou, Feng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) : 511 - 528
  • [35] Global attractors for degenerate parabolic equations on unbounded domains
    Feireisl, E
    Laurencot, P
    Simondon, F
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (02) : 239 - 261
  • [36] GLOBAL ATTRACTORS FOR A CLASS OF DEGENERATE PARABOLIC EQUATIONS WITH MEMORY
    Ma, Shan
    You, Bo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2044 - 2055
  • [37] COMPACT ATTRACTORS FOR DEGENERATE PARABOLIC EQUATIONS IN R(N)
    FEIREISL, E
    LAURENCOT, P
    SIMONDON, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (09): : 1079 - 1083
  • [38] EXISTENCE AND UNIQUENESS OF SOLUTIONS TO DEGENERATE SEMILINEAR PARABOLIC EQUATIONS
    STAHEL, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (02) : 311 - 331
  • [39] Beyond quenching for degenerate singular semilinear parabolic equations
    Chan, CY
    Yang, J
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 121 (2-3) : 185 - 201
  • [40] Homogenization of Attractors for Semilinear Parabolic Equations on Manifolds with Complicated Microstructure
    de Monvel, L. Boutet
    Chueshov, I. D.
    Khruslov, E. Ya.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1997, 172 (01) : 297 - 322