Machine Learning and Student Performance in Teams

被引:2
|
作者
Ahuja, Rohan [1 ]
Khan, Daniyal [1 ]
Tahir, Sara [1 ]
Wang, Magdalene [1 ]
Symonette, Danilo [1 ]
Pan, Shimei [1 ]
Stacey, Simon [1 ]
Engel, Don [1 ]
机构
[1] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
基金
美国国家科学基金会;
关键词
Machine learning; Teamwork; Performance prediction; Text mining; TEAMWORK;
D O I
10.1007/978-3-030-52240-7_55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This project applies a variety of machine learning algorithms to the interactions of first year college students using the GroupMe messaging platform to collaborate online on a team project. The project assesses the efficacy of these techniques in predicting existing measures of team member performance, generated by self- and peer assessment through the Comprehensive Assessment of Team Member Effectiveness (CATME) tool. We employed a wide range of machine learning classifiers (SVM, KNN, Random Forests, Logistic Regression, Bernoulli Naive Bayes) and a range of features (generated by a socio-linguistic text analysis program, Doc2Vec, and TF-IDF) to predict individual team member performance. Our results suggest machine learning models hold out the possibility of providing accurate, real-time information about team and team member behaviors that instructors can use to support students engaged in team-based work, though challenges remain.
引用
收藏
页码:301 / 305
页数:5
相关论文
共 50 条
  • [41] A comparative study of machine learning and deep learning algorithms for predicting student's academic performance
    Bhushan, Megha
    Vyas, Satyam
    Mall, Shrey
    Negi, Arun
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (06) : 2674 - 2683
  • [42] A comparative study of machine learning and deep learning algorithms for predicting student’s academic performance
    Megha Bhushan
    Satyam Vyas
    Shrey Mall
    Arun Negi
    International Journal of System Assurance Engineering and Management, 2023, 14 : 2674 - 2683
  • [43] Prediction of Student's Performance With Learning Coefficients Using Regression Based Machine Learning Models
    Asthana, Pallavi
    Mishra, Sumita
    Gupta, Nishu
    Derawi, Mohammad
    Kumar, Anil
    IEEE ACCESS, 2023, 11 : 72732 - 72742
  • [44] Leveraging machine learning and clickstream data to improve student performance prediction in virtual learning environments
    Khoudi, Zakaria
    Hafidi, Nasreddine
    Nachaoui, Mourad
    Lyaqini, Soufiane
    INFORMATION DISCOVERY AND DELIVERY, 2025,
  • [45] A comparison of machine learning algorithms for predicting student performance in an online mathematics game
    Lee, Ji-Eun
    Jindal, Amisha
    Patki, Sanika Nitin
    Gurung, Ashish
    Norum, Reilly
    Ottmar, Erin
    INTERACTIVE LEARNING ENVIRONMENTS, 2024, 32 (09) : 5302 - 5316
  • [46] Enhancing Student Academic Performance Forecasting: A Comparative Analysis of Machine Learning Algorithms
    Ishaan Dawar
    Sakshi Negi
    Sumita Lamba
    Ashok Kumar
    SN Computer Science, 5 (6)
  • [47] Machine Learning Algorithm to Predict Student's Performance: A Systematic Literature Review
    Sandra, Lidia
    Lumbangaol, Ford
    Matsuo, Tokuro
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2021, 10 (04): : 1919 - 1927
  • [48] Classification and prediction of student performance data using various machine learning algorithms
    Pallathadka H.
    Wenda A.
    Ramirez-Asís E.
    Asís-López M.
    Flores-Albornoz J.
    Phasinam K.
    Materials Today: Proceedings, 2023, 80 : 3782 - 3785
  • [49] Assessment of feature selection for student academic performance through machine learning classification
    Suguna, R.
    Devi, M. Shyamala
    Bagate, Rupali Amit
    Joshi, Apama Shashikant
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2019, 22 (04): : 729 - 739
  • [50] Metaheuristics Method for Classification and Prediction of Student Performance Using Machine Learning Predictors
    Kamal, Mustafa
    Chakrabarti, Sudakshina
    Ramirez-Asis, Edwin
    Asis-Lopez, Maximiliano
    Allauca-Castillo, Wendy
    Kumar, Tribhuwan
    Sanchez, Domenic T.
    Rahmani, Abdul Wahab
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022