Chern and Majorana modes of quasiperiodic systems

被引:35
|
作者
Satija, Indubala I. [1 ]
Naumis, Gerardo G.
机构
[1] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA
关键词
FERMIONS;
D O I
10.1103/PhysRevB.88.054204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Different types of self-similar states are found in quasiperiodic systems characterized by topological invariants-the Chern numbers. We show that the topology introduces a competing length in the self-similar band edge states transforming peaks into doublets of size equal to the Chern number. This length intertwines with quasiperiodicity and introduces an intrinsic scale, producing Chern beats and nested regions where the fractal structure becomes smooth. Chern numbers also influence the zero-energy mode that, for quasiperiodic systems, which exhibit exponential localization, is related to the ghost of the Majorana: the remnant of the edge localized topological state that delocalizes at the onset to a topological transition. In superconducting wires, the exponentially decaying profile of the edge localized Majorana modes also encode fingerprints of the Chern states that reside in close proximity to zero energy.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Majorana zero modes in spintronics devices
    Wu, Chien-Te
    Anderson, Brandon M.
    Hsiao, Wei-Han
    Levin, K.
    PHYSICAL REVIEW B, 2017, 95 (01)
  • [42] EXOTIC MATTER Majorana modes materialize
    Alicea, Jason
    NATURE NANOTECHNOLOGY, 2013, 8 (09) : 623 - 624
  • [43] Nonlocality of Majorana modes in hybrid nanowires
    Deng, M-T.
    Vaitiekenas, S.
    Prada, E.
    San-Jose, P.
    Nygard, J.
    Krogstrup, P.
    Aguado, R.
    Marcus, C. M.
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [44] Majorana and non-Majorana modes in a nanowire in partially proximity to a superconductor
    Liu, Ze-Gang
    Huang, Yue-Xin
    Guo, Guang-Can
    Gong, Ming
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (09)
  • [45] Majorana edge modes with gain and loss
    Yuce, C.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [46] Effective model for Majorana modes in graphene
    Manesco, A. L. R.
    Weber, G.
    Rodrigues Jr, D.
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [47] Ettingshausen effect due to Majorana modes
    Hou, C-Y
    Shtengel, K.
    Refael, G.
    Goldbart, P. M.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [48] Bosonization of Majorana modes and edge states
    Bochniak, Arkadiusz
    Ruba, Blazej
    Wosiek, Jacek
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [49] Emergence of Majorana modes in cylindrical nanowires
    Lim, Jong Soo
    Lopez, Rosa
    Serra, Llorenc
    EPL, 2013, 103 (03)
  • [50] Sublattice-sensitive Majorana modes
    Zhu, Di
    Li, Bo-Xuan
    Yan, Zhongbo
    PHYSICAL REVIEW B, 2022, 106 (24)