FETAL HEART RATE ANALYSIS BY HIERARCHICAL DIRICHLET PROCESS MIXTURE MODELS

被引:0
|
作者
Yu, Kezi [1 ]
Quirk, J. Gerald [2 ]
Djuric, Petar M. [1 ]
机构
[1] SUNY Stony Brook, Stony Brook Univ Hosp, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Stony Brook Univ Hosp, Dept Obstet Gynecol, Stony Brook, NY 11794 USA
关键词
Fetal heart rate; Hierarchical Dirichlet process; mixture model;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose to analyze fetal heart rate (FHR) signals by hierarchical Dirichlet process (HDP) mixture models. We investigate whether the clustering results of real-world FHR time series obtained by these models are informative in terms of determining the health status of a fetus. The FHR signals are divided into two groups, healthy and unhealthy, according to the umbilical arterial blood pH values of the fetuses. We computed the frequencies of clusters appearing in each of the groups, and applied the Mann-Whitney U test to compare the frequencies. The results showed that the frequencies of appearance of certain clusters are statistically significantly different across the two groups. This indicates that certain clusters may relate to pathological fetal heart rate patterns.
引用
收藏
页码:709 / 713
页数:5
相关论文
共 50 条
  • [31] User Role Analysis in Online Social Networks Based on Dirichlet Process Mixture Models
    Du, Fei
    Liu, Yezheng
    Liu, Xiao
    Sun, Jianshan
    Jiang, Yuanchun
    2016 FOURTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD 2016), 2016, : 172 - 177
  • [32] Unsupervised learning of Dirichlet process mixture models with missing data
    Xunan ZHANG
    Shiji SONG
    Lei ZHU
    Keyou YOU
    Cheng WU
    ScienceChina(InformationSciences), 2016, 59 (01) : 161 - 174
  • [33] Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data
    Dinari, Or
    Freifeld, Oren
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 818 - 835
  • [34] An optimal data ordering scheme for Dirichlet process mixture models
    Wang, Xue
    Walker, Stephen G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 42 - 52
  • [35] Hierarchical Mixture Models: a Probabilistic Analysis
    Sandler, Mark
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 580 - 589
  • [36] Selecting the precision parameter prior in Dirichlet process mixture models
    Murugiah, Siva
    Sweeting, Trevor
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 1947 - 1959
  • [37] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Goeruer, Dilan
    Rasmussen, Carl Edward
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (04) : 653 - 664
  • [38] Automated Movement Detection with Dirichlet Process Mixture Models and Electromyography
    Cooray, Navin
    Li, Zhenglin
    Wang, Jinzhuo
    Lo, Christine
    Arvaneh, Mahnaz
    Symmonds, Mkael
    Hu, Michele
    De Vos, Maarten
    Mihaylova, Lyudmila S.
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [39] Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution
    Dilan Görür
    Carl Edward Rasmussen
    Journal of Computer Science and Technology, 2010, 25 : 653 - 664
  • [40] CLASSIFICATION OF MULTIVARIATE DATA USING DIRICHLET PROCESS MIXTURE MODELS
    Djuric, Petar M.
    Ferrari, Andre
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 441 - 445