Serre's conjecture for imaginary quadratic fields

被引:14
|
作者
Figueiredo, LM [1 ]
机构
[1] Univ Fed Fluminense, Math Inst, Dept Geometria, BR-24020005 Niteroi, RJ, Brazil
关键词
modular forms; Serre's conjecture;
D O I
10.1023/A:1001739825854
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an analog over an imaginary quadratic field K of Serre's conjecture for modular forms. Given a continuous irreducible representation rho:Gal((Q) over bar/K) --> GL(2)((F) over bar(l)) we ask if rho is modular. We give three examples of representations rho obtained by restriction of even representations of Gal((Q) over bar/Q). These representations appear to be modular when viewed as representations over K, as shown by the computer calculations described at the end of the paper.
引用
收藏
页码:103 / 122
页数:20
相关论文
共 50 条
  • [21] A Conjecture on Units of Quadratic Fields
    Bircan, Nihal
    EXPERIMENTAL MATHEMATICS, 2014, 23 (02) : 95 - 98
  • [22] Serre’s modularity conjecture (I)
    Chandrashekhar Khare
    Jean-Pierre Wintenberger
    Inventiones mathematicae, 2009, 178 : 485 - 504
  • [23] Serre’s conjecture and its consequences
    Chandrashekhar Khare
    Japanese Journal of Mathematics, 2010, 5 : 103 - 125
  • [24] Remarks on Serre's modularity conjecture
    Dieulefait, Luis
    MANUSCRIPTA MATHEMATICA, 2012, 139 (1-2) : 71 - 89
  • [25] An elementary case of Serre's conjecture
    Rohrlich, DE
    Tunnell, JB
    PACIFIC JOURNAL OF MATHEMATICS, 1997, : 299 - 309
  • [26] A simplified proof of Serre’s conjecture
    Luis Victor Dieulefait
    Ariel Martín Pacetti
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [27] A simplified proof of Serre's conjecture
    Dieulefait, Luis Victor
    Pacetti, Ariel Martin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [28] Remarks on Serre’s modularity conjecture
    Luis Dieulefait
    Manuscripta Mathematica, 2012, 139 : 71 - 89
  • [29] Serre's conjecture and its consequences?
    Khare, Chandrashekhar
    JAPANESE JOURNAL OF MATHEMATICS, 2010, 5 (01): : 103 - 125
  • [30] A note on Ono's numbers associated to imaginary quadratic fields
    Sairaiji, F
    Shimizu, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (02) : 29 - 31