Suppression of flow-induced vibration of a circular cylinder by means of a flexible sheet

被引:14
|
作者
Kim, Sangil [2 ]
Lee, Seung-Chul [1 ]
机构
[1] Kangwon Natl Univ, Dept Fire Protect Engn, Samcheok 245711, South Korea
[2] Kangwon Natl Univ, Dept Mech Engn, Samcheok 245711, South Korea
关键词
Circular cylinder; Flow-induced vibration; Suppression of the flow-induced vibration; Flexible sheet; PASSIVE CONTROL; DRAG REDUCTION;
D O I
10.1007/s12206-012-0419-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the suppression of flow-induced vibration of an elastically supported circular cylinder by attachment of a flexible sheet was investigated experimentally. In particular, the dependence of flow-induced vibration characteristics of the circular cylinder upon the flow velocity was investigated in detail by axially attaching the flexible poly-ethylene sheet to the cylinder surface. The characteristics of the flow-induced vibration of the cylinder were investigated by changing the attachment angle theta and the length / of the flexible sheet (rectangular type) as experimental parameters in various combinations. The angle theta was set at five different angles, 90 degrees, 45 degrees, 0 degrees, -45 degrees and -90 degrees. The angle's base point was the back side stagnation point of the cylinder. The length / of the flexible sheet varied from 0.5 to 3.0 times of the cylinder's diameter at the interval of 0.5 times. The width T of the flexible sheet along the span of the cylinder also varied in 7 cases from 1.0L to 0.4L (L is the length of the cylinder) in order to discover the minimum width of the sheet necessary to effectively suppress the flow-induced vibration of the cylinder. Furthermore, the flexible sheet of the minimum width was split into 2 to 5 pieces and attached to the cylinder, and changes in the flow-induced vibration characteristics were investigated. Also, vibration characteristics were investigated for a flexible sheet in the shape of an isosceles triangle. As a result, the optimal length / and minimum width T of the flexible rectangular sheet were found to be 2 similar to 2.5D and 0.7L, respectively, to suppress the flow-induced vibration of the cylinder. Most importantly, it was found that the sheet located at the back side stagnation point can suppress the flow-induced vibration generated by any directional flow to strike the front surface of the cylinder.
引用
收藏
页码:1773 / 1779
页数:7
相关论文
共 50 条
  • [31] Experimental investigation of flow-induced vibration and flow field characteristics of a flexible triangular cylinder
    Mousavisani, Seyedmohammad
    Samandari, Hamed
    Seyed-Aghazadeh, Banafsheh
    JOURNAL OF FLUID MECHANICS, 2024, 979
  • [32] Experimental investigation on flow-induced vibration excitation in an elastically mounted circular cylinder in cylinder arrays
    Selvakumar, K. Karthik
    Kumaraswamidhas, L. A.
    FLUID DYNAMICS RESEARCH, 2015, 47 (01) : 1 - 11
  • [33] Prediction of Streamwise Flow-Induced Vibration of A Circular Cylinder in the First Instability Range
    徐万海
    余建星
    杜杰
    成安康
    康昊
    China Ocean Engineering, 2012, 26 (04) : 555 - 564
  • [34] Prediction of streamwise flow-induced vibration of a circular cylinder in the first instability range
    Wan-hai Xu
    Jian-xing Yu
    Jie Du
    An-kang Cheng
    Hao Kang
    China Ocean Engineering, 2012, 26 : 555 - 564
  • [35] A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder
    Xie, Jiemin
    Yang, Jiashi
    Hu, Hongping
    Hu, Yuantai
    Chen, Xuedong
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (02) : 135 - 139
  • [36] Prediction of streamwise flow-induced vibration of a circular cylinder in the first instability range
    Xu Wan-hai
    Yu Jian-xing
    Du Jie
    Cheng An-kang
    Kang Hao
    CHINA OCEAN ENGINEERING, 2012, 26 (04) : 555 - 564
  • [37] Flow-Induced Vibration of a rotating circular cylinder using position and velocity feedback
    Vicente-Ludlam, D.
    Barrero-Gil, A.
    Velazquez, A.
    JOURNAL OF FLUIDS AND STRUCTURES, 2017, 72 : 127 - 151
  • [38] Experimental study on flow-induced vibration of a circular cylinder with a downstream square plate
    Su, Bo
    He, Shihao
    Zhang, Mingjie
    Feng, Jiantong
    OCEAN ENGINEERING, 2022, 247
  • [39] Computational simulation of the flow-induced vibration of a circular cylinder subjected to wake interference
    Carmo, Bruno S.
    Assi, Gustavo R. S.
    Meneghini, Julio R.
    JOURNAL OF FLUIDS AND STRUCTURES, 2013, 41 : 99 - 108
  • [40] Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder
    Zhao, J.
    Lo Jacono, D.
    Sheridan, J.
    Hourigan, K.
    Thompson, M. C.
    JOURNAL OF FLUID MECHANICS, 2018, 847 : 664 - 699