QUANTIFICATION OF RESTING-STATE FMRI NETWORKS DRIVEN BY HEMODYNAMICALLY INFORMED SPATIOTEMPORAL REGULARIZATION

被引:0
|
作者
Karahanoglu, F. Isik [1 ,2 ]
Piguet, Camille [3 ]
Farouj, Younes [4 ,5 ]
Vuilleumier, Patrik [3 ,6 ]
Van de Ville, Dimitri [4 ,5 ]
机构
[1] Massachusetts Gen Hosp, MGH HST Athinoula Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[2] Harvard Med Sch, Dept Radiol, Boston, MA 02115 USA
[3] Univ Geneva, Fac Med, Dept Neurosci, Geneva, Switzerland
[4] Univ Geneva, Fac Med, Dept Radiol & Med Informat, Geneva, Switzerland
[5] Ecole Polytech Fed Lausanne, Med Image Proc Lab, Lausanne, Switzerland
[6] Swiss Ctr Affect Sci, Campus Biotech, Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
resting-state fMRI; deconvolution; mood disorders; total activation; innovation-driven co-activation patterns; ACTIVATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The brain's spontaneous fluctuations measured by functional magnetic resonance imaging during rest cluster into recurrent activity patterns known as resting-state networks (RSNs). The spatial organization of RSNs in health and disease has been immensely investigated by conventional correlational analyses of fMRI time series. Recent findings of time resolved analyses have provided evidence of reoccurring activation patterns that are accessible at instantaneous time points enabling the dynamic characterization of RSNs. We have proposed a method to recover spatially and temporally overlapping RSNs, which we named innovation-driven co-activation patterns (iCAPs), to study the dynamic engagement of RSNs unconstrained by the slow hemodynamic response. The iCAPs are extracted by temporal clustering of sparse innovation signals recovered from Total Activation (TA) framework, which is cast as a variational problem with sparsity-promoting spatial and temporal priors for fMRI data deconvolution. The temporal prior uses the inverse of the hemodynamic response function as a general differential operator and exploits sparsity of the innovation signals. In this work, we perform a quantitative analysis to assess the stability of iCAPs recovered from a group of patients with mood disorders and healthy volunteers.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 50 条
  • [31] Resting-state fMRI in primary Sjogren syndrome
    Xing, Wu
    Shi, Wei
    Leng, Yueshuang
    Sun, Xianting
    Guan, Tingting
    Liao, Weihua
    Wang, Xiaoyi
    ACTA RADIOLOGICA, 2018, 59 (09) : 1091 - 1096
  • [32] Editorial: Origins of the Resting-State fMRI Signal
    Chen, J. Jean
    Herman, Peter
    Keilholz, Shella
    Thompson, Garth J.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [33] Explicability in resting-state fMRI for gender classification
    Raison, Adrien
    Bourdon, Pascal
    Habas, Christophe
    Helbert, David
    2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 5 - 8
  • [34] Resting-State fMRI and Developmental Systems Neuroscience
    Uddin, Lucina Q.
    BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 22S - 22S
  • [35] Resting-state fMRI in the Human Connectome Project
    Smith, Stephen M.
    Beckmann, Christian F.
    Andersson, Jesper
    Auerbach, Edward J.
    Bijsterbosch, Janine
    Douaud, Gwenaelle
    Duff, Eugene
    Feinberg, David A.
    Griffanti, Ludovica
    Harms, Michael P.
    Kelly, Michael
    Laumann, Timothy
    Miller, Karla L.
    Moeller, Steen
    Petersen, Steve
    Power, Jonathan
    Salimi-Khorshidi, Gholamreza
    Snyder, Abraham Z.
    Vu, An T.
    Woolrich, Mark W.
    Xu, Junqian
    Yacoub, Essa
    Ugurbil, Kamil
    Van Essen, David C.
    Glasser, Matthew F.
    NEUROIMAGE, 2013, 80 : 144 - 168
  • [36] Parameter Estimation in Brain Dynamics Models from Resting-State fMRI Data using Physics-Informed Neural Networks
    Sotero, Roberto C.
    Sanchez-Bornot, Jose M.
    Shaharabi-Farahani, Iman
    2024 8TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND APPLICATIONS, ICBEA 2024, 2024, : 73 - 79
  • [37] Functional connectomics from resting-state fMRI
    Smith, Stephen M.
    Vidaurre, Diego
    Beckmann, Christian F.
    Glasser, Matthew F.
    Jenkinson, Mark
    Miller, Karla L.
    Nichols, Thomas E.
    Robinson, Emma C.
    Salimi-Khorshidi, Gholamreza
    Woolrich, Mark W.
    Barch, Deanna M.
    Ugurbil, Kamil
    Van Essen, David C.
    TRENDS IN COGNITIVE SCIENCES, 2013, 17 (12) : 666 - 682
  • [38] Resting-state fMRI in social phobia patients
    van der Wee, N.
    Pannekoek, N.
    Veer, I.
    van Tol, M. J.
    Demenescu, L.
    Aleman, A.
    Veltman, D.
    Zitman, F.
    Rombouts, S.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2011, 21 : S536 - S536
  • [39] Aberrant interactions of cortical networks in chronic migraine A resting-state fMRI study
    Coppola, Gianluca
    Di Renzo, Antonio
    Petolicchio, Barbara
    Tinelli, Emanuele
    Di Lorenzo, Cherubino
    Parisi, Vincenzo
    Serrao, Mariano
    Calistri, Valentina
    Tardioli, Stefano
    Cartocci, Gaia
    Schoenen, Jean
    Caramia, Francesca
    Di Piero, Vittorio
    Pierelli, Francesco
    NEUROLOGY, 2019, 92 (22) : E2550 - E2558
  • [40] Resting-state fMRI and developmental systems neuroscience
    Uddin, Lucina Q.
    FRONTIERS IN NEUROSCIENCE, 2011, 5