A faster King-Werner-type iteration and its convergence analysis

被引:0
|
作者
Sharma, Janak Raj [1 ]
Argyros, Ioannis K. [2 ]
Kumar, Sunil [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal, India
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
关键词
King-Werner method; local convergence; semi-local convergence; Banach space; Euclidean space; 1&SQUARE-ROOT2 ORDER METHOD; NEWTON-LIKE METHOD; EQUATIONS; FORMULAS; SYSTEMS; FAMILY;
D O I
10.1080/00036811.2019.1569228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new faster two-step King-Werner-type iterative method for solving nonlinear equations. The methodology is based on rational Hermite interpolation. The local as well as semi-local convergence analyses are presented under weak center Lipschitz and Lipschitz conditions. The convergence order is increased from 1+ root 2 to 3 without any additional function calculations. Another advantage is the convenient fact that this method does not use derivatives. Numerical examples further validate the theoretical results.
引用
收藏
页码:2526 / 2542
页数:17
相关论文
共 50 条
  • [41] CONVERGENCE ANALYSIS OF THE DEFECT-CORRECTION ITERATION FOR HYPERBOLIC PROBLEMS
    DESIDERI, JA
    HEMKER, PW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01): : 88 - 118
  • [42] Improved local convergence analysis of the Landweber iteration in Banach spaces
    Gaurav Mittal
    Ankik Kumar Giri
    Archiv der Mathematik, 2023, 120 : 195 - 202
  • [43] CONVERGENCE ANALYSIS OF THE CHARGE ITERATION PROCEDURE FOR UNBOUNDED ELECTRICAL FIELDS
    AIELLO, G
    ALFONZETTI, S
    COCO, S
    SALERNO, N
    IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (05) : 2873 - 2876
  • [44] Improved local convergence analysis of the Landweber iteration in Banach spaces
    Mittal, Gaurav
    Giri, Ankik Kumar
    ARCHIV DER MATHEMATIK, 2023, 120 (02) : 195 - 202
  • [45] Convergence Analysis of a Picard–CR Iteration Process for Nonexpansive Mappings
    Bashir Nawaz
    Kifayat Ullah
    Krzysztof Gdawiec
    Soft Computing, 2025, 29 (2) : 435 - 455
  • [46] CONVERGENCE ANALYSIS OF ITERATIVE SOLVERS IN INEXACT RAYLEIGH QUOTIENT ITERATION
    Xue, Fei
    Elman, Howard C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 877 - 899
  • [47] Convergence of the Ishikawa-type iteration procedure for multi-valued operators of the accretive type
    Osilike, MO
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (02): : 117 - 127
  • [48] Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings
    Zegeye, H.
    Shahzad, N.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) : 4007 - 4014
  • [49] Convergence analysis of a novel iteration process with application to a fractional differential equation
    Izhar Uddin
    Chanchal Garodia
    Thabet Abdeljawad
    Nabil Mlaiki
    Advances in Continuous and Discrete Models, 2022
  • [50] Convergence Analysis of Variational Iteration Method for Caputo Fractional Differential Equations
    Wen, Zhiwu
    Yi, Jie
    Liu, Hongliang
    ASIASIM 2012, PT II, 2012, 324 : 296 - 307