Existence and Convergence Theorems of Best Proximity Points

被引:9
|
作者
Gabeleh, Moosa [1 ]
Shahzad, Naseer [2 ]
机构
[1] Ayatollah Boroujerdi Univ, Dept Math, Boroujerd, Iran
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
SPACES;
D O I
10.1155/2013/101439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove some best proximity point theorems for new classes of cyclic mappings, called pointwise cyclic orbital contractions and asymptotic pointwise cyclic orbital contractions. We also prove a convergence theorem of best proximity point for relatively nonexpansive mappings in uniformly convex Banach spaces.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Nonlinear conditions for the existence of best proximity points
    Du, Wei-Shih
    Lakzian, Hossein
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [22] Nonlinear conditions for the existence of best proximity points
    Wei-Shih Du
    Hossein Lakzian
    Journal of Inequalities and Applications, 2012
  • [23] On the existence of best proximity points for generalized contractions
    Sultana, Asrifa
    Vetrivel, V.
    APPLIED GENERAL TOPOLOGY, 2014, 15 (01): : 55 - 63
  • [24] EXISTENCE AND UNIQUENESS RESULTS FOR BEST PROXIMITY POINTS
    Gabeleh, Moosa
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 123 - 131
  • [25] KKM-type theorems for best proximity points
    Raj, V. Sankar
    Somasundaram, S.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 496 - 499
  • [26] Common best proximity points theorems in metric spaces
    Amini-Harandi, A.
    OPTIMIZATION LETTERS, 2014, 8 (02) : 581 - 589
  • [27] Common best proximity points theorems in metric spaces
    A. Amini-Harandi
    Optimization Letters, 2014, 8 : 581 - 589
  • [28] On Some Application on Coupled and Best Proximity Points Theorems
    Hristov, Miroslav
    Ilchev, Atanas
    Zlatanov, Boyan
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [29] EXISTENCE AND CONVERGENCE OF BEST PROXIMITY POINTS IN NEW TYPE OF CONTRACTIONS IN MENGER PROBABILISTIC METRIC SPACES
    Jamali, M.
    Vaezpour, S. M.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [30] STRONG CONVERGENCE THEOREMS FOR φ-BEST PROXIMITY POINTS OF NON-SELF NONEXTENSIVE MAPPINGS IN A BANACH SPACE
    Behera, Priyanka Priyadarshini
    Nahak, C.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (04): : 33 - 44