Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism

被引:84
|
作者
Alouges, F
Jaisson, P
机构
[1] Univ Orsay, Math Lab, F-91405 Orsay, France
[2] Ecole Normale Super, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[3] Ecole Cent Paris, Lab MAS, F-92295 Chatenay Malabry, France
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2006年 / 16卷 / 02期
关键词
Finite elements; micromagnetism; Landau-Lifshitz equations; weak solutions;
D O I
10.1142/S0218202506001169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new space and time finite elements discretization of the Landau-Lifshitz equations which may be readily used for numerical computations. We then prove its convergence to a weak solution in the sense given by Alouges and Soyeur or Labbe in the literature.
引用
收藏
页码:299 / 316
页数:18
相关论文
共 50 条
  • [31] SOME NOVEL CASES OF THE INTEGRABILITY OF LANDAU-LIFSHITZ EQUATIONS
    YELEONSKY, VM
    KULAGIN, NE
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1983, 84 (02): : 616 - 628
  • [32] A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation
    Banas, L'ubomir
    Bartels, Soeren
    Prohl, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1399 - 1422
  • [33] A constrained finite element formulation for the Landau-Lifshitz-Gilbert equations
    Szambolics, H.
    Buda-Prejbeanu, L. D.
    Toussaint, J. C.
    Fruchart, O.
    COMPUTATIONAL MATERIALS SCIENCE, 2008, 44 (02) : 253 - 258
  • [34] Landau-Lifshitz equations for magnetic systems with constant and variable memory
    Ya. L. Kobelev
    L. Ya. Kobelev
    E. P. Romanov
    Doklady Physics, 2003, 48 : 409 - 413
  • [35] Blow up problem for Landau-Lifshitz equations in two dimensions
    Boling GUO
    Yongqian HAN and Ganshan YANG Institute of Applied Physics and Computational Mathematics
    Communications in Nonlinear Science & Numerical Simulation, 2000, (01) : 43 - 44
  • [36] Exact solutions to the Mo-Papas and Landau-Lifshitz equations
    Rivera, R
    Villarroel, D
    PHYSICAL REVIEW E, 2002, 66 (04): : 8
  • [37] ON LANDAU-LIFSHITZ EQUATIONS OF NO-EXCHANGE ENERGY MODELS IN FERROMAGNETICS
    Deng, Wei
    Yan, Baisheng
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (04): : 599 - 620
  • [38] ON GLOBAL WEAK SOLUTIONS FOR LANDAU-LIFSHITZ EQUATIONS - EXISTENCE AND NONUNIQUENESS
    ALOUGES, F
    SOYEUR, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (11) : 1071 - 1084
  • [39] ON THE EXACT-SOLUTIONS OF THE LANDAU-LIFSHITZ EQUATIONS FOR WEAK FERROMAGNETS
    ELEONSKII, VM
    KIROVA, NN
    KULAGIN, NE
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1980, 79 (01): : 321 - 332
  • [40] LOCAL WELL POSEDNESS OF THE CAUCHY PROBLEM FOR THE LANDAU-LIFSHITZ EQUATIONS
    Fuwa, Atsushi
    Tsutsumi, Masayoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (04) : 379 - 404