Fabrication of Chiral Materials via Self-Assembly and Biomineralization of Peptides

被引:8
|
作者
Huang, Zhehao [1 ]
Che, Shunai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, State Key Lab Composite Mat, Shanghai 200240, Peoples R China
来源
CHEMICAL RECORD | 2015年 / 15卷 / 04期
关键词
amphiphilic peptides; biomineralization; chirality; self-assembly; silica; SURFACTANT-LIKE PEPTIDES; CIRCULAR-DICHROISM; AMPHIPHILE NANOFIBERS; PLASMONIC NANOSTRUCTURES; FORM NANOTUBES; SILICA; HELIX; PROTEIN; DESIGN; MOLECULES;
D O I
10.1002/tcr.201402096
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With different scales of chirality, chiral materials have various particular properties and potential applications in many fields. Peptides are the fundamental building units of biological systems, and a variety of ordered functional nanostructures are produced through self-assembly and biomineralization of peptides in nature. This Personal Account describes chiral silica materials fabricated by using amphiphilic peptides as building blocks. Three particular biomineralization approaches are described based on different kinds of geometry of amphiphilic peptides: the influence of the specific amino acid proline in the peptide sequence, the hydrophilicity of amphiphilic peptides, and different kinds of hydrophobic tails in amphiphilic peptides. These strategies are useful for designing peptides toward the bottom-up synthesis of nanomaterials as well as improving the understanding of the mechanism of peptide self-assembly.
引用
收藏
页码:665 / 674
页数:10
相关论文
共 50 条
  • [21] Self-assembly of peptides to nanostructures
    Mandal, Dindyal
    Shirazi, Amir Nasrolahi
    Parang, Keykavous
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2014, 12 (22) : 3544 - 3561
  • [22] Dissipative Self-Assembly of Peptides
    Tena-Solsona, Marta
    Boekhoven, Job
    ISRAEL JOURNAL OF CHEMISTRY, 2019, 59 (10) : 898 - 905
  • [23] Self-assembly of amphiphilic peptides
    Hamley, I. W.
    SOFT MATTER, 2011, 7 (09) : 4122 - 4138
  • [24] Tuning the Self-Assembly of Short Peptides via Sequence Variations
    Zhao, Yurong
    Wang, Jiqian
    Deng, Li
    Zhou, Peng
    Wang, Shengjie
    Wang, Yanting
    Xu, Hai
    Lu, Jian R.
    LANGMUIR, 2013, 29 (44) : 13457 - 13464
  • [25] SELF-ASSEMBLY OF COLLAGEN PEPTIDES INTO MICROFLORETTES VIA METAL COORDINATION
    Pires, M.
    Chmielewski, J.
    BIOPOLYMERS, 2009, 92 (04) : 317 - 318
  • [26] Self-assembly of chiral tubules
    Cheng, Shengfeng
    Stevens, Mark J.
    SOFT MATTER, 2014, 10 (03) : 510 - 518
  • [27] Visualizing chiral self-assembly
    Selinger, RLB
    Selinger, JV
    Malanoski, AP
    Schnur, JM
    CHAOS, 2004, 14 (04) : S3 - S3
  • [28] Sensing of chiral compounds via self-assembly with a stereodynamic probe
    De los Santos, Zeus
    Wolf, Christian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] Chiral polyaniline nanotubes synthesized via a self-assembly process
    Zhang, LJ
    Wan, MX
    THIN SOLID FILMS, 2005, 477 (1-2) : 24 - 31
  • [30] Building Functional Materials via Self-assembly of Calixazacrowns
    Oueslati, Issam
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (01) : 57 - 62