Comparative analysis of thermal preference prediction performance in different conditions using ensemble learning models based on ASHRAE Comfort Database II

被引:13
|
作者
Bai, Yan [1 ,2 ,3 ,4 ]
Liu, Kai [1 ]
Wang, Yuying [2 ]
机构
[1] Xian Univ Architecture & Technol, Sch Informat & Control Engn, Xian 710055, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
[3] Anhui Jianzhu Univ, Anhui Prov Key Lab Intelligent Bldg & Bldg Energy, Hefei 230022, Peoples R China
[4] Xian Univ Architecture & Technol, Sch Informat & Control Engn, 13 Yanta Rd, Xian, Shaanxi, Peoples R China
关键词
Thermal preference prediction; Ensemble learning models; Season; Building type; Deep cascade forest; INDOOR ENVIRONMENT QUALITY; RANDOM FOREST; BUILDINGS; OCCUPANTS; SYSTEM;
D O I
10.1016/j.buildenv.2022.109462
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Prediction of thermal comfort of building occupants using ensemble learning models is a hot research topic. The performance of ensemble learning models used to predict thermal preference may not only be determined by its algorithm structure, but also by the parameters of the data set chosen for training the learning models as well as the characteristics (building type and season) of the dataset. In this paper, based on precision, recall, F1-score, weighted F1-score, the prediction performance of 10 machine learning models (6 traditional and 4 ensemble models) trained with different data subsets was compared systematically, and the characteristics of ASHRAE Comfort Database II were used for the first time to observe the performance of ensemble learning models. The feature importance of the variables was calculated by random forest (RF) and gradient boosting decision tree (GBDT) to explore the key parameters influencing thermal preference prediction. The results showed that the performance of the ensemble models achieved the greatest improvement in the process of training data increasing from 40% to 60%. After training with the data from the classroom during the summer, the ensemble learning models showed a significant performance based on the weighted F1-score. Furthermore, compared with other models, RF and deep cascade forest (DCF) showed significant advantages in predicting thermal preference with different data subsets. Therefore, RF and DCF with selected key parameters of thermal preference can be used to predict individual thermal preference in different conditions, providing references for automatic regu-lation of building thermal environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Wind Power Prediction Using Ensemble Learning-Based Models
    Lee, Junho
    Wang, Wu
    Harrou, Fouzi
    Sun, Ying
    IEEE ACCESS, 2020, 8 (08): : 61517 - 61527
  • [22] Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
    De Bock, Koen W.
    Van den Poel, Dirk
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (08) : 6816 - 6826
  • [23] Heavy metal adsorption efficiency prediction using biochar properties: a comparative analysis for ensemble machine learning models
    Zaher Mundher Yaseen
    Farah Loui Alhalimi
    Scientific Reports, 15 (1)
  • [24] Comparative performance of multiple ensemble learning models for preoperative prediction of tumor deposits in rectal cancer based on MR imaging
    Wang, Jiayi
    Hu, Fayong
    Li, Jin
    Lv, Wenzhi
    Liu, Zhiyong
    Wang, Liang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data
    Chen, Kangyang
    Chen, Hexia
    Zhou, Chuanlong
    Huang, Yichao
    Qi, Xiangyang
    Shen, Ruqin
    Liu, Fengrui
    Zuo, Min
    Zou, Xinyi
    Wang, Jinfeng
    Zhang, Yan
    Chen, Da
    Chen, Xingguo
    Deng, Yongfeng
    Ren, Hongqiang
    WATER RESEARCH, 2020, 171 (171)
  • [26] Comparative Analysis of Machine Learning Models for Performance Prediction of the SPEC Benchmarks
    Tousi, Ashkan
    Lujan, Mikel
    IEEE ACCESS, 2022, 10 : 11994 - 12011
  • [27] Comparative analysis of different Karnal bunt disease prediction models developed by machine learning techniques for Punjab conditions
    Anand, Shubham
    Sandhu, Sarabjot Kaur
    Biswas, Barun
    Bala, Ritu
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2024, 68 (09) : 1799 - 1810
  • [28] Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning
    Kim, Joyce
    Zhou, Yuxun
    Schiavon, Stefano
    Raftery, Paul
    Brager, Gail
    BUILDING AND ENVIRONMENT, 2018, 129 : 96 - 106
  • [29] Comparative analysis of feature selection and extraction methods for student performance prediction across different machine learning models
    Laakel Hemdanou, Abderrafik
    Lamarti Sefian, Mohammed
    Achtoun, Youssef
    Tahiri, Ismail
    Computers and Education: Artificial Intelligence, 2024, 7
  • [30] A Comparative Analysis on Improving Covid-19 Prediction by Using Ensemble Learning Methods
    Kartal, Elif
    DIGITIZING PRODUCTION SYSTEMS, ISPR2021, 2022, : 3 - 14