LAWS OF RARE EVENTS FOR DETERMINISTIC AND RANDOM DYNAMICAL SYSTEMS

被引:0
|
作者
Aytac, Hale [1 ]
Freitas, Jorge Milhazes [1 ,2 ]
Vaienti, Sandro [3 ,4 ]
机构
[1] Univ Porto, Ctr Matemat, P-4169007 Porto, Portugal
[2] Univ Porto, Fac Ciencias, P-4169007 Porto, Portugal
[3] Aix Marseille Univ, CNRS, CPT, UMR 7332, F-13288 Marseille, France
[4] Univ Toulon & Var, CNRS, CPT, UMR 7332, F-83957 La Garde, France
关键词
Random dynamical systems; extreme values; hitting times statistics; extremal index; HITTING TIME STATISTICS; RETURN TIMES; RECURRENCE; RATES; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is twofold. From one side we study the dichotomy, in terms of the Extremal Index of the possible Extreme Value Laws, when the rare events are centred around periodic or non-periodic points. Then we build a general theory of Extreme Value Laws for randomly perturbed dynamical systems. We also address, in both situations, the convergence of Rare Events Point Processes. Decay of correlations against L-1 observables will play a central role in our investigations.
引用
收藏
页码:8229 / 8278
页数:50
相关论文
共 50 条
  • [31] Simulating Rare Events in Dynamical Processes
    Giardina, Cristian
    Kurchan, Jorge
    Lecomte, Vivien
    Tailleur, Julien
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (04) : 787 - 811
  • [32] Simulating Rare Events in Dynamical Processes
    Cristian Giardina
    Jorge Kurchan
    Vivien Lecomte
    Julien Tailleur
    Journal of Statistical Physics, 2011, 145 : 787 - 811
  • [33] Rare events and conditional events on random strings
    Règnier, M
    Denise, A
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2004, 6 (02): : 191 - 213
  • [34] A SURVEY OF RESULTS ON CONSERVATION LAWS WITH DETERMINISTIC AND RANDOM INITIAL DATA
    Caginalp, Carey
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (06): : 2043 - 2069
  • [35] Extreme events in multivariate deterministic systems
    Nicolis, C.
    Nicolis, G.
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [36] Determinating lyapunov exponents in deterministic dynamical systems
    Delecroix, M
    Guegan, D
    Leorat, G
    COMPUTATIONAL STATISTICS, 1997, 12 (01) : 93 - 107
  • [38] Roots in the Semiring of Finite Deterministic Dynamical Systems
    Dore, Francois
    Perrot, Kevin
    Porreca, Antonio E.
    Riva, Sara
    Rolland, Marius
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2024, 2024, 14782 : 120 - 132
  • [39] Stable large deviations for deterministic dynamical systems
    Imbierski, Jonny
    Terhesiu, Dalia
    STOCHASTICS AND DYNAMICS, 2024, 24 (04)
  • [40] DETERMINISTIC IDENTIFICATION OF DYNAMICAL-SYSTEMS - INTRODUCTION
    HEIJ, C
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 127 : 1 - +