5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress

被引:66
|
作者
Xiong, Jun-Lan [1 ]
Wang, Hang-Chao [1 ]
Tan, Xiao-Yu [1 ]
Zhang, Chun-Lei [1 ,2 ]
Naeem, Muhammad Shahbaz [3 ]
机构
[1] Chinese Acad Agr Sci, Oilcrops Res Inst, Wuhan 430062, Hubei, Peoples R China
[2] Minist Agr, Key Lab Biol & Genet Improvement Oilcrops, Wuhan 430062, Hubei, Peoples R China
[3] Univ Agr Faisalabad, Dept Bot, Faisalabad, Pakistan
基金
中国国家自然科学基金;
关键词
Salt stress; 5-aminolevulinic acid; Chlorophyll; Heme; Proline; Photosynthesis; HELIANTHUS-ANNUUS L; PHOTOSYNTHETIC GAS-EXCHANGE; ANTIOXIDANT ENZYME-ACTIVITY; CHLOROPHYLL BIOSYNTHESIS; SALINITY STRESS; WATER-STRESS; GROWTH; PLANTS; ASSAY; MODULATION;
D O I
10.1016/j.plaphy.2018.01.001
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
5-aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrroles, is vital for plant growth and adaptation to stress environments. Although exogenous ALA could enhance photosynthesis and biomass accumulation in plants under stress conditions, the underlying physiological and molecular mechanisms governed by ALA in promoting salt tolerance in Brassica napus L. are not yet clearly understood. In the present study, exogenous ALA with the concentration of 30 mg L-1 was applied to the leaves of B. napus seedlings subjected to 200 mM NaCl. The results showed that NaCl stress decreased the photosynthesis, biomass accumulation, and levels of chlorophyll and heme with the reduction of the concentrations of intermediates including ALA, protoporphyrin IX (Proto IX), Mg-Proto IX, and Pchlide in the tetrapyrrole (chlorophyll and heme) biosynthetic pathway. The transcript levels of genes encoding ALA-associated enzymes and genes encoding Mg-chelatase in the chlorophyll biosynthetic branch were down-regulated, while the expression levels of genes encoding Fe-chelatase in the heme branch were not significantly altered by NaCl stress. Foliar application with ALA enhanced the above-ground biomass, net photosynthetic rate, activities of antioxidant enzymes, accumulation of chlorophyll and heme, and concentrations of intermediates related to chlorophyll and heme biosynthesis in B. napus under 200 mM NaCl. The expression of most genes mentioned above remained constant in ALA-treated plants in comparison with non-ALA-treated plants under NaCl stress. Additionally, exogenous ALA synchronously induced the proline concentration and up-regulated the expression of genes P5CS and ProDH encoding proline metabolic enzymes in the NaCl treatment. These findings suggested that ALA improved salt tolerance through promoting the accumulation of chlorophyll and heme resulting from the increase of intermediate levels in the tetrapyrrole biosynthetic pathway, along with enhancing the proline accumulation in B. napus.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [31] Effects of Exogenous 5-AminolevuliniC Acid (5-ALA) on Alfalfa (Medicago sativa L.) under NaCl-induced Salinity Stress
    Xu, Nan
    Chen, Zhao
    Niu, Junpeng
    Niu, Kaijun
    Khan, Zulfikar
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025, 25 (01) : 478 - 494
  • [32] Effects of Exogenous 5-AminolevuliniC Acid (5-ALA) on Alfalfa (Medicago sativa L.) under NaCl-induced Salinity Stress
    Nan Xu
    Zhao Chen
    Junpeng Niu
    Kaijun Niu
    Zulfikar Khan
    Journal of Soil Science and Plant Nutrition, 2025, 25 (1) : 478 - 494
  • [33] Foliar application of 5-aminolevulinic acid improves the salt tolerance in sunflower (Helianthus annuus L.) by enhancing the morphological attributes and antioxidant defense mechanism
    Sher, Ahmad
    Nawaz, Ahmad
    Ul-Allah, Sami
    Sattar, Abdul
    Ijaz, Muhammad
    Qayyum, Abdul
    Manaf, Abdul
    ACTA PHYSIOLOGIAE PLANTARUM, 2024, 46 (03)
  • [34] Role of 5-aminolevulinic acid in the salinity stress response of the seeds and seedlings of the medicinal plant Cassia obtusifolia L.
    Chun-Ping Zhang
    Yi-Cun Li
    Feng-Gang Yuan
    Shi-Jun Hu
    Hai-Ying Liu
    Ping He
    Botanical Studies, 54
  • [35] Role of 5-aminolevulinic acid in the salinity stress response of the seeds and seedlings of the medicinal plant Cassia obtusifolia L.
    Zhang, Chun-Ping
    Li, Yi-Cun
    Yuan, Feng-Gang
    Hu, Shi-Jun
    Liu, Hai-Ying
    He, Ping
    BOTANICAL STUDIES, 2013, 54
  • [36] Foliar application of 5-aminolevulinic acid improves the salt tolerance in sunflower (Helianthus annuus L.) by enhancing the morphological attributes and antioxidant defense mechanism
    Ahmad Sher
    Ahmad Nawaz
    Sami Ul-Allah
    Abdul Sattar
    Muhammad Ijaz
    Abdul Qayyum
    Abdul Manaf
    Acta Physiologiae Plantarum, 2024, 46
  • [37] Seed treatment with chlormequat chloride improves the physiological and biochemical characteristics of Brassica napus L. under salt stress
    Vazayefi, Maryam
    Shekari, Farid
    Zangani, Esmaeil
    Dolatabadian, Aria
    Janda, Tibor
    Mastinu, Andrea
    PLANT STRESS, 2023, 9
  • [38] Hydrogen Sulfide Interacts with 5-Aminolevulinic Acid to Enhance the Antioxidant Capacity of Pepper (Capsicum annuum L.) Seedlings under Chilling Stress
    Wang, Huiping
    Liu, Zeci
    Li, Jing
    Luo, Shilei
    Zhang, Jing
    Xie, Jianming
    AGRONOMY-BASEL, 2022, 12 (03):
  • [39] Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4
    Li, Huashan
    Lei, Peng
    Pang, Xiao
    Li, Sha
    Xu, Hong
    Xu, Zongqi
    Feng, Xiaohai
    APPLIED SOIL ECOLOGY, 2017, 119 : 26 - 34
  • [40] 5-Aminolevulinic Acid Improves Morphogenesis and Na+ Subcellular Distribution in the Apical Cells of Cucumis sativus L. Under Salinity Stress
    Wu, Yue
    Liu, Na
    Hu, Linli
    Liao, Weibiao
    Tang, Zhongqi
    Xiao, Xuemei
    Lyu, Jian
    Xie, Jianming
    Calderon-Urrea, Alejandro
    Yu, Jihua
    FRONTIERS IN PLANT SCIENCE, 2021, 12