Electrostatic contribution to hysteresis loop in piezoresponse force microscopy

被引:21
|
作者
Qiao, Huimin [1 ]
Seol, Daehee [1 ]
Sun, Changhyo [1 ]
Kim, Yunseok [1 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Adv Mat & Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Piezoelectricity - Hysteresis - Scanning probe microscopy;
D O I
10.1063/1.5090591
中图分类号
O59 [应用物理学];
学科分类号
摘要
In piezoresponse force microscopy (PFM), ideally, electromechanical strain is induced only by the converse piezoelectric effect. In reality, however, the obtained experimental PFM signal is a combination of many other factors. In particular, the concurrent electrostatic effect between the tip/cantilever and a sample surface can be significant because the electrostatic effect induced by surface potential is inevitable in some cases. However, most previous reports dealt with the extreme case of the electrostatic effect, such as the on-field state. That is, the contributions to the hysteresis loop of electrostatic effects from different sources have not yet been clearly understood. In the present work, we study the electrostatic effect on the hysteresis loop in relation to various measurement parameters. The results indicate that the PFM response is strongly affected by the electrostatic effect caused by external charge injection. This work can provide a guideline for determining the PFM response in a hysteresis loop. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Materials contrast in piezoresponse force microscopy
    Kalinin, Sergei V.
    Eliseev, Eugene A.
    Morozovska, Anna N.
    APPLIED PHYSICS LETTERS, 2006, 88 (23)
  • [22] Dynamic behaviour in piezoresponse force microscopy
    Jesse, S
    Baddorf, AP
    Kalinin, SV
    NANOTECHNOLOGY, 2006, 17 (06) : 1615 - 1628
  • [23] Piezoresponse force microscopy and nanoferroic phenomena
    Alexei Gruverman
    Marin Alexe
    Dennis Meier
    Nature Communications, 10
  • [24] Depth resolution in piezoresponse force microscopy
    Roeper, Matthias
    Seddon, Samuel D.
    Amber, Zeeshan H.
    Ruesing, Michael
    Eng, Lukas M.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (22)
  • [25] Piezoresponse force microscopy and nanoferroic phenomena
    Gruverman, Alexei
    Alexe, Marin
    Meier, Dennis
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [26] Depth resolution of piezoresponse force microscopy
    Johann, Florian
    Ying, Yongjun J.
    Jungk, Tobias
    Hoffmann, Akos
    Sones, Collin L.
    Eason, Robert W.
    Mailis, Sakellaris
    Soergel, Elisabeth
    APPLIED PHYSICS LETTERS, 2009, 94 (17)
  • [27] An alternative scheme to measure single-point hysteresis loops using piezoresponse force microscopy
    Flores-Ruiz, F. J.
    Gervacio-Arciniega, J. J.
    Murillo-Bracamontes, E.
    Cruz, M. P.
    Yanez-Limon, J. M.
    Siqueiros, J. M.
    MEASUREMENT, 2017, 108 : 143 - 151
  • [28] Quantification of the Electromechanical Measurements by Piezoresponse Force Microscopy
    Buragohain, Pratyush
    Lu, Haidong
    Richter, Claudia
    Schenk, Tony
    Kariuki, Pamenas
    Glinsek, Sebastjan
    Funakubo, Hiroshi
    Iniguez, Jorge
    Defay, Emmanuel
    Schroeder, Uwe
    Gruverman, Alexei
    ADVANCED MATERIALS, 2022, 34 (47)
  • [29] Progress in nanoscale piezoresponse force microscopy on ferroelectrics
    Yu, HF
    Zeng, HR
    Chu, RQ
    Li, GR
    Yin, QR
    JOURNAL OF INORGANIC MATERIALS, 2005, 20 (02) : 257 - 266
  • [30] Local polarization switching in piezoresponse force microscopy
    Morozovska, Anna N.
    Kalinin, Sergei V.
    Eliseev, Eugene A.
    Svechnikov, Sergei V.
    FERROELECTRICS, 2007, 354 : 198 - 207