Irradiance filtering for Monte Carlo ray tracing

被引:13
|
作者
Kontkanen, J [1 ]
Räsänen, J
Keller, A
机构
[1] Aalto Univ, TML, POB 5400, FIN-02015 Helsinki, Finland
[2] Hybrid Graph Ltd, FIN-02015 Helsinki, Finland
[3] Univ Ulm, D-89069 Ulm, Germany
关键词
D O I
10.1007/3-540-31186-6_16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic ray tracing algorithms generate photo-realistic images by simulating the global illumination. Typically a rather long computation time is required for decreasing the visible noise to an acceptable level. In this paper we propose a spatially variant low-pass filter for reducing this noise. We analyze the theoretical background of the method and present an efficient implementation that enables the use of a comparatively small number of samples while producing high quality images. Our algorithm can be used to accelerate path tracing and final gathering in photon mapping. We compare the method to irradiance caching and the results show that our algorithm renders images of similar or better quality up to five times faster.
引用
收藏
页码:259 / +
页数:2
相关论文
共 50 条
  • [1] Edge diffraction in Monte Carlo ray tracing
    Freniere, ER
    Gregory, GG
    Hassler, RA
    OPTICAL DESIGN AND ANALYSIS SOFTWARE, 1999, 3780 : 151 - 157
  • [2] Polarization models for Monte Carlo ray tracing
    Freniere, ER
    Gregory, GG
    Hassler, RA
    OPTICAL DESIGN AND ANALYSIS SOFTWARE, 1999, 3780 : 148 - 150
  • [3] Optimization of Monte Carlo Algorithms and Ray Tracing on GPUs
    Bergmann, Ryan M.
    Vujic, Jasmina L.
    SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, 2014,
  • [4] Monte Carlo simulation of curvature gauges by ray tracing
    Kovacevic, M
    Nikezic, D
    Djordjevich, A
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (09) : 1756 - 1761
  • [5] Adaptive Sample Map for Monte Carlo Ray Tracing
    Teng, Jun
    Luo, Lixin
    Chen, Zhibo
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744
  • [6] Efficiency Investigation of Langevin Monte Carlo Ray Tracing
    Ershov, Sergey
    Frolov, Vladimir
    Nikolaev, Alexander
    Galaktionov, Vladimir
    Voloboy, Alexey
    MATHEMATICS, 2024, 12 (21)
  • [7] Development of empirical equations for irradiance profile of a standard parabolic trough collector using Monte Carlo ray tracing technique
    Islam, M.
    Karim, M. A.
    Saha, S. C.
    Miller, Sarah
    Yarlagadda, P. K. D. V.
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 180 - +
  • [8] Threadsafe Dynamic Neighbor Lists for Monte Carlo Ray Tracing
    Harper, Sterling M.
    Romano, Paul K.
    Forget, Benoit
    Smith, Kord S.
    NUCLEAR SCIENCE AND ENGINEERING, 2020, 194 (11) : 1009 - 1015
  • [9] Differentiable Monte Carlo Ray Tracing through Edge Sampling
    Li, Tzu-Mao
    Aittala, Miika
    Durand, Fredo
    Lehtinen, Jaakko
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [10] Differentiable Monte Carlo Ray Tracing through Edge Sampling
    Li, Tzu-Mao
    Aittala, Miika
    Durand, Fredo
    Lehtinen, Jaakko
    SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,