On the Probabilities of Correlated Defaults: a First Passage Time Approach

被引:4
|
作者
Valuzis, M. [1 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
来源
关键词
correlated defaults; joint probability of default; implied correlation;
D O I
10.15388/NA.2008.13.1.14593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates the joint probability of correlated defaults in the first passage time approach of credit risk subject to condition that the underlying firms' assets values and the default boundaries follow geometric Brownian motion processes. The exact analytical expression of joint probability of two correlated defaults in the case of stochastic default boundaries is presented. Also, some properties of this solution are provided.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 50 条
  • [21] Phase transitions in the first-passage time of scale-invariant correlated processes
    Carretero-Campos, Concepcion
    Bernaola-Galvan, Pedro
    Ivanov, Plamen Ch
    Carpena, Pedro
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [22] A correlated random walk first passage time distance for data clustering with medical applications
    Zin, Thi Thi
    Tin, Pyke
    Toriu, Takashi
    Hama, Hiromitsu
    1600, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (05): : 577 - 582
  • [23] First passage time statistics for systems driven by long range correlated Gaussian noises
    Romero, Aldo H.
    Sancho, J. M.
    Lindenberg, Katja
    FLUCTUATION AND NOISE LETTERS, 2002, 2 (02): : L79 - L100
  • [24] ON CORRELATED DEFAULTS AND INCOMPLETE INFORMATION
    Ching, Wai-Ki
    Gu, Jia-Wen
    Zheng, Harry
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (02) : 889 - 908
  • [25] GRAPHICAL MODELS FOR CORRELATED DEFAULTS
    Filiz, Ismail Onur
    Guo, Xin
    Morton, Jason
    Sturmfels, Bernd
    MATHEMATICAL FINANCE, 2012, 22 (04) : 621 - 644
  • [26] A reflection principle for correlated defaults
    Patras, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (04) : 690 - 698
  • [27] Numeric defaults - About an expressive first-order framework for reasoning with infinitesimal probabilities
    Weydert, E
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING AND UNCERTAINTY, 1995, 946 : 420 - 427
  • [28] First Passage Densities and Boundary Crossing Probabilities for Diffusion Processes
    Andrew N. Downes
    Konstantin Borovkov
    Methodology and Computing in Applied Probability, 2008, 10 : 621 - 644
  • [29] On tail probabilities and first passage times for fractional Brownian motion
    Michna, Z
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1999, 49 (02) : 335 - 354
  • [30] On tail probabilities and first passage times for fractional Brownian motion
    Zbigniew Michna
    Mathematical Methods of Operations Research, 1999, 49 (2) : 335 - 354