Amplified luminescence of heavily doped AlxGa1-xN structures under optical pumping

被引:0
|
作者
Bokhan, P. A. [1 ]
Zhuravlev, K. S. [1 ,3 ]
Zakrevskii, D. E. [1 ,2 ]
Malin, T. V. [1 ]
Osinnykh, I. V. [1 ,3 ]
Fateev, N. V. [1 ,3 ]
机构
[1] Russian Acad Sci, AV Rzhanov Inst Semicond Phys, Siberian Branch, Prosp Akad Lavrenteva 13, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Prosp Karla Marksa 20, Novosibirsk 630092, Russia
[3] Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia
关键词
luminescence; optical pumping; spontaneous emission; gain; BAND SUPERLUMINESCENT DIODES; LENGTH; GAN;
D O I
10.1070/QEL16529
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spectral, temporal, and polarisation characteristics of luminescence of heavily doped AlxGa1-xN films on a sapphire substrate are studied under pulsed pumping at the wavelength lambda = 266 m. Spectra of spontaneous emission related to donor - acceptor transitions are inhomogeneously broadened with the FWHM of above 0.5 eV and cover the entire visible range. Spectra of radiation emitted from an edge of investigated structure comprise several narrow-band equidistant components, each of them being split to TE and TM modes with mutually orthogonal polarisations. This is related to plane waves propagating inside a plane waveguide along a zigzag path in the conditions of total internal reflection from waveguide surfaces. The optical gains measured for Al0.5Ga0.5N/AlN at lambda approximate to 510 nm, Al0.74Ga0.26N/AlN at lambda approximate to 468 nm, and AlN/Al0.6Ga0.4N/AlN/Al2O3 at lambda approximate to 480 nm were, respectively, similar to 70, 20, and 44 cm(-1). The luminescence quantum efficiencies measured for Al0.74Ga0.26N, Al0.65Ga0.35N, and Al0.5Ga0.5N films are, respectively, 0.79, 0.49, and 0.14; the transition cross sections calculated at emission band centres are similar to 10(-18) cm(2).
引用
收藏
页码:215 / 221
页数:7
相关论文
共 50 条
  • [21] Optical investigation of exciton localization in AlxGa1-xN
    Lee, K. B.
    Parbrook, P. J.
    Wang, T.
    Ranalli, F.
    Martin, T.
    Balmer, R. S.
    Wallis, D. J.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
  • [22] Optical quenching of photoconductivity in AlxGa1-xN epilayers
    Seghier, D.
    Gislason, H. P.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (23-24) : 4880 - 4881
  • [23] Lattice site location and luminescence studies of AlxGa1-xN alloys doped with thulium ions
    Fialho, M.
    Lorenz, K.
    Magalhaes, S.
    Rodrigues, J.
    Santos, N. F.
    Monteiro, T.
    Alves, E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 307 : 495 - 498
  • [24] Structural and optical properties of AlxGa1-xN nanowires
    Pierret, A.
    Bougerol, C.
    den Hertog, M.
    Gayral, B.
    Kociak, M.
    Renevier, H.
    Daudin, B.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (10): : 868 - 873
  • [25] Design of Optical Component Structure for AlxGa1-xN
    Yang, Mingzhu
    Chang, Benkang
    Hao, Guanghui
    INTERNATIONAL CONFERENCE ON PHOTONICS SOLUTIONS 2015, 2015, 9659
  • [26] Modeling the optical constants of AlxGa1-xN alloys
    Djurisic, AB
    Li, EH
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (12) : 4078 - 4086
  • [27] Dependence of optical absorption spectra of the flat double nanoheterostructures AlxGa1-xN/GaN/AlxGa1-xN on their thickness and concentration
    Derevyanchuk, Oleksandr V.
    Kondryuk, Denys V.
    Kramar, Valeriy M.
    THIRTEENTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2017, 10612
  • [28] Doping of AlxGa1-xN
    Stampfl, C
    Van de Walle, CG
    APPLIED PHYSICS LETTERS, 1998, 72 (04) : 459 - 461
  • [29] AlN, GaN, AlxGa1-xN nanotubes and GaN/AlxGa1-xN nanotube heterojunctions
    de Almeida, James M.
    Kar, Tapas
    Piquini, Paulo
    PHYSICS LETTERS A, 2010, 374 (06) : 877 - 881
  • [30] Optical characterization of AlxGa1-xN/GaN high electron mobility transistor structures
    Lin, D. Y.
    Wu, J. D.
    Zheng, J. Y.
    Lin, C. F.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1763 - 1765