Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries

被引:7
|
作者
Subhan, Achmad [1 ]
Oemry, Ferensa [1 ]
Khusna, Siti Nailul [2 ]
Hastuti, Erna [2 ]
机构
[1] Indonesian Inst Sci LIPI, Res Ctr Phys, Komplek Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
[2] UIN Maulana Malik Ibrahim, Dept Phys, Jl Gajayana 10, Malang 65144, East Java, Indonesia
关键词
Lithium-ion battery; Li4Ti5O12; Rutile TiO2; Activated carbon; Coconut shell; OBSERVED INTEGRATED-INTENSITIES; INDIVIDUAL CRYSTALLINE PHASES; CHEMICAL-COMPOSITION DATA; COCONUT SHELL CHARS; ELECTROCHEMICAL PROPERTIES; DIRECT DERIVATION; WEIGHT FRACTIONS; DOPED LI4TI5O12; LI; PERFORMANCE;
D O I
10.1007/s11581-018-2633-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conventional solid-state reaction method that is widely adopted to synthesize Li4Ti5O12 (LTO) typically generates rutile TiO2 phase at calcination temperature range between 700 and 900 degrees C in which two competitive reactions between anatase-to-rutile TiO2 and Li2TiO3-to-Li4Ti5O12 formations occur simultaneously. This study investigates the effectiveness of coconut shell-based activated carbon treatment to eliminate the formation of anatase-to-rutile TiO2. X-ray diffraction (XRD) results indicate that mixing LTO precursors with 3, 6, and 10wt% activated carbon prior to calcination process could reduce the amount of rutile TiO2 phase in LTO down to 6.9, 4.6, and 3.5wt%, respectively, versus 9.1wt% in untreated LTO. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements show that LTO pretreated with 10wt% AC has discharge capacity of 168.35mAhg(-1) and also Li+-ion diffusion rate of 1.2x10(-13)cm(2)s(-1). These values are comparably higher than those of untreated LTO that gains lower discharge capacity of 134.93mAhg(-1) and Li+-ion diffusion rate of 6.9x10(-14)cm(2)s(-1). This improvement could be attributed to the suppression of anatase-to-rutile TiO2 formation during calcination process.
引用
收藏
页码:1025 / 1034
页数:10
相关论文
共 50 条
  • [11] Preparation and performances of Li4Ti5O12/C as anode material for lithium-ion batteries
    Gu, Fang
    FRONTIER IN INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS, 2012, 189 : 185 - 188
  • [12] Review on doping strategy in Li4Ti5O12 as an anode material for Lithium-ion batteries
    Ezhyeh, Z. Nezamzadeh
    Khodaei, M.
    Torabi, F.
    CERAMICS INTERNATIONAL, 2023, 49 (05) : 7105 - 7141
  • [13] Study on sucrose modification of anode material Li4Ti5O12 for Lithium-ion batteries
    Wang, Jian
    Li, Yongjie
    Zhang, Xiaojun
    Deng, Heming
    Zhao, Yuzhen
    Cheng, Qi
    Gao, Xu
    Tang, Shun
    Cao, Yuan-Cheng
    RESULTS IN PHYSICS, 2019, 13
  • [14] Improving the properties of Li4Ti5O12 - a promising anode material for lithium-ion batteries
    Olszewska, Danuta
    Niewiedzial, Jakub
    Boczkowski, Jakub
    ENERGY AND FUELS 2018, 2019, 108
  • [15] Li4Ti5O12/Ti4O7/carbon nanotubes composite anode material for lithium-ion batteries
    Zhang, Xiaoyan
    Xu, Wen
    Li, Xing
    Zhong, Xiaoxi
    Liu, Wanying
    Lin, Yuanhua
    Xia, Ruochen
    MICRO & NANO LETTERS, 2018, 13 (07): : 915 - 918
  • [16] Facile Synthesis and Characterization of Li4Ti5O12 as Anode Material for Lithium Ion Batteries
    Xie, Ling-Ling
    Xu, Yuan-Dong
    Zhang, Jie-Jie
    Cao, Xiao-Yu
    Wang, Bo
    Yan, Xiang-Yang
    Qu, Ling-Bo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (02): : 1701 - 1712
  • [17] A new hydrothermal synthesis of spherical Li4Ti5O12 anode material for lithium-ion secondary batteries
    Yan, Hui
    Zhu, Zhi
    Zhang, Ding
    Li, Wei
    Qilu
    JOURNAL OF POWER SOURCES, 2012, 219 : 45 - 51
  • [18] Optimization of Technology for Synthesis of Li4Ti5O12 Anode Materials for Lithium-Ion Batteries
    Pershina, S.V.
    Antonov, B.D.
    Farlenkov, A.S.
    Russian Journal of Applied Chemistry, 2021, 94 (01): : 30 - 37
  • [19] Optimization of Technology for Synthesis of Li4Ti5O12 Anode Materials for Lithium-Ion Batteries
    S. V. Pershina
    B. D. Antonov
    A. S. Farlenkov
    Russian Journal of Applied Chemistry, 2021, 94 : 30 - 37
  • [20] Optimization of Technology for Synthesis of Li4Ti5O12 Anode Materials for Lithium-Ion Batteries
    Pershina, S. V.
    Antonov, B. D.
    Farlenkov, A. S.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2021, 94 (01) : 30 - 37