Spatio-temporal Trajectory Region-of-Interest Mining Using Delaunay Triangulation

被引:25
|
作者
Bermingham, Luke [1 ]
Lee, Kyungmi [1 ]
Lee, Ickjai [1 ]
机构
[1] James Cook Univ, Coll Business Law & Governance, Informat Technol, POB 6811, Cairns, Qld 4870, Australia
关键词
Trajectory; region of interest; delaunay;
D O I
10.1109/ICDMW.2014.47
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the ubiquity of GPS enabled devices and the advances in sensing technologies, trajectory data has become abundant. Regions of interest are important since they describe specific hot-spots within the data that often correlate with domain specific phenomena. Traditional region of interest mining utilises grid based rasters to model space. This suffers from two main problems: hard to determine the best grid size and unable to model consistent spatial adjacency. This paper utilises a 3D argument free space tessellation, Delaunay triangulation, to partition spatio-temporal trajectory data and extract arbitrary shaped regions of interest. Experimental results demonstrate the robustness and improved effectiveness of our approach at identifying granular spatio-temporal patterns.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] Trajectory Compression with Spatio-Temporal Semantic Constraints
    Zhou, Yan
    Zhang, Yunhan
    Zhang, Fangfang
    Zhang, Yeting
    Wang, Xiaodi
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (06)
  • [42] Spatio-temporal shape from silhouette using four-dimensional Delaunay meshing
    Aganj, Ehsan
    Pons, Jean-Philippe
    Segonne, Florent
    Keriven, Renaud
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1463 - 1470
  • [43] Spatio-Temporal Interest Points Matching in Video
    Elabbessi, Sarra
    Abdellaoui, Mehrez
    Douik, Ali
    2015 GLOBAL SUMMIT ON COMPUTER & INFORMATION TECHNOLOGY (GSCIT), 2015,
  • [44] Activity analysis using spatio-temporal trajectory volumes in surveillance applications
    Janoos, Firdaus
    Singh, Shantanu
    Irfanoglu, Okan
    Machiraju, Raghu
    Parent, Richard
    VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 3 - 10
  • [45] Motion trajectory clustering for video retrieval using spatio-temporal approximations
    Khalid, S
    Naftel, A
    VISUAL INFORMATION AND INFORMATION SYSTEMS, 2006, 3736 : 60 - 70
  • [46] REGION: Relevant Entropy Graph spatIO-temporal convolutional Network for Pedestrian Trajectory Prediction
    Wang, Naiyao
    Wang, Yukun
    Zhou, Changdong
    Abraham, Ajith
    Liu, Hongbo
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 150 - 159
  • [47] Mining contacts from spatio-temporal trajectories
    Madanayake, Adikarige Randil Sanjeewa
    Lee, Kyungmi
    Lee, Ickjai
    AI OPEN, 2024, 5 : 197 - 207
  • [48] Mining frequent spatio-temporal sequential patterns
    Cao, HP
    Mamoulis, N
    Cheung, DW
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 82 - 89
  • [49] Region of Interest Analysis Using Delaunay Triangulation for Facial Video-Based Heart Rate Estimation
    Gao, Haoyuan
    Zhang, Chao
    Pei, Shengbing
    Wu, Xiaopei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [50] Exploratory spatio-temporal data mining and visualization
    Compieta, P.
    Di Martino, S.
    Bertolotto, M.
    Ferrucci, F.
    Kechadi, T.
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2007, 18 (03): : 255 - 279