Spatio-temporal Trajectory Region-of-Interest Mining Using Delaunay Triangulation

被引:25
|
作者
Bermingham, Luke [1 ]
Lee, Kyungmi [1 ]
Lee, Ickjai [1 ]
机构
[1] James Cook Univ, Coll Business Law & Governance, Informat Technol, POB 6811, Cairns, Qld 4870, Australia
关键词
Trajectory; region of interest; delaunay;
D O I
10.1109/ICDMW.2014.47
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the ubiquity of GPS enabled devices and the advances in sensing technologies, trajectory data has become abundant. Regions of interest are important since they describe specific hot-spots within the data that often correlate with domain specific phenomena. Traditional region of interest mining utilises grid based rasters to model space. This suffers from two main problems: hard to determine the best grid size and unable to model consistent spatial adjacency. This paper utilises a 3D argument free space tessellation, Delaunay triangulation, to partition spatio-temporal trajectory data and extract arbitrary shaped regions of interest. Experimental results demonstrate the robustness and improved effectiveness of our approach at identifying granular spatio-temporal patterns.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Estimation of spatio-temporal wave grouping properties using Delaunay triangulation and spline techniques
    Nieto Borge, Jose Carlos
    Gerardo Alcazar, Juan
    Orden, David
    Marazuela Reca, Sara
    Rodriguez, Gerardo
    OCEAN ENGINEERING, 2019, 187
  • [2] SPATIO-TEMPORAL PATTERN MINING ON TRAJECTORY DATA USING ARM
    Khoshahval, S.
    Farnaghi, M.
    Taleai, M.
    ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 395 - 399
  • [3] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [4] Software for spatio-temporal trajectory analysis and pattern mining
    Sidorova, Marina
    Pidhornyi, Pavlo
    2018 14TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET), 2018, : 958 - 961
  • [5] Mining Spatio-Temporal Semantic Trajectory for Groups Identification
    Cao, Yang
    Si, Yunfei
    Cai, Zhi
    Ding, Zhiming
    2018 IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), 2018, : 308 - 313
  • [6] Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 92 : 1 - 11
  • [7] Spatio-Temporal Contact Mining for Multiple Trajectories-of-Interest
    Madanayake, Adikarige Randil Sanjeewa
    Lee, Kyungmi
    Lee, Ickjai
    IEEE ACCESS, 2024, 12 : 79458 - 79467
  • [9] Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data
    Wu, Guojun
    Ding, Yichen
    Li, Yanhua
    Bao, Jie
    Zheng, Yu
    Luo, Jun
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1283 - 1294
  • [10] Spatio-temporal trajectory alignment for trajectory evaluation
    Tombrink, Gereon
    Dreier, Ansgar
    Klingbeil, Lasse
    Kuhlmann, Heiner
    JOURNAL OF APPLIED GEODESY, 2024,