Cations controlled growth of β-MnO2 crystals with tunable facets for electrochemical energy storage

被引:59
|
作者
Yao, Wentao [1 ]
Odegard, Gregory M. [1 ]
Huang, Zhennan [2 ]
Yuan, Yifei [2 ,3 ]
Asayesh-Ardakani, Hasti [1 ,2 ]
Sharifi-Asl, Soroosh [2 ]
Cheng, Meng [2 ]
Song, Boao [2 ]
Deivanayagam, Ramasubramonian [2 ]
Long, Fei [1 ]
Friedrich, Craig R. [1 ]
Amine, Khalil [3 ,4 ]
Lu, Jun [3 ]
Shahbazian-Yassar, Reza [1 ,2 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA
[4] Imam Abdulrahman Bin Faisal Univ Dammam, Inst Res & Med Consultat, Dammam 34212, Saudi Arabia
基金
美国国家科学基金会;
关键词
Manganese dioxide; Facet engineering; Hydrothermal synthesis; Growth mechanism; Lithium-ion batteries; HYDROTHERMAL SYNTHESIS; PHASE-TRANSFORMATION; MNO2; NANOSTRUCTURES; ALPHA-MNO2; OXIDE; ION; PERFORMANCE; COMPOSITES; MECHANISMS; NANOWIRES;
D O I
10.1016/j.nanoen.2018.03.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Engineering crystal facets to enhance their functionalities often require complex processing routes to suppress the growth of surfaces with the lowest thermodynamic energies. Herein, we report a unique method to control the morphologies of beta-MnO2 crystals with different occupancy of {100}/{111} facets through the effect of K+ cations. Combining aberration-corrected scanning transmission electron microscopy (STEM), ultramicrotomy, and dynamic functional theory (DFT) simulation, we clarified that the beta-MnO2 crystals were formed through a direct solid-state phase transition process. Increasing the concentration of K+ cations in the precursor gradually changed the morphology of beta-MnO2 from bipyramid prism ({100}+{111} facets) to an octahedron structure ({111} facets). The K+ cations controlled the morphology of beta-MnO2 by affecting the formation of a-K0.5Mn4O8 intermediate phase and the subsequent phase transition. Utilizing the beta-MnO2 crystals as the cathode for Li-ion batteries showed that highly exposed {111} facets offered beta-MnO2 crystal better rate performance, with similar to 70% capacity retention when the charge-discharge rate increased from 20 mA/g to 200 mA/g. Our work revealed a new mechanism to tune the morphology of this earth-abundant metal oxide crystal, which could be used to adjust its electrochemical performance for different applications, such as supercapacitors and catalysts for metalair batteries and fuel cells.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [21] MnO2/mont K10 composite for high electrochemical capacitive energy storage
    Badathala, Vijayakumar
    Ponniah, Justin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (28) : 12183 - 12193
  • [22] Facile Preparation of MnO2/Graphene Nanocomposites with Spent Battery Powder for Electrochemical Energy Storage
    Deng, Jinxing
    Wang, Xue
    Duan, Xiaojuan
    Liu, Peng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (07): : 1330 - 1338
  • [23] Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage
    He, Shuijian
    Zhang, Ruizhong
    Zhang, Chunmei
    Liu, Minmin
    Gao, Xiaohui
    Ju, Jian
    Li, Lei
    Chen, Wei
    JOURNAL OF POWER SOURCES, 2015, 299 : 408 - 416
  • [24] One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage
    Zhang, Qian
    Wu, Xiangfang
    Zhang, Qingqing
    Yang, Fengjian
    Dong, Hongzhou
    Sui, Jing
    Dong, Lifeng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 837 : 108 - 115
  • [25] MnO2/carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO2 mass loading
    Hassan, Sameh
    Suzuki, Masaaki
    Mori, Shinsuke
    Abd El-Moneim, Ahmed
    RSC ADVANCES, 2014, 4 (39): : 20479 - 20488
  • [26] MnO2/carbon nanowall electrode for future energy storage application: Effect of carbon nanowall growth period and MnO2 mass loading
    Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku Tokyo 152-8552, Japan
    不详
    不详
    RSC Adv., 39 (20479-20488):
  • [27] Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors
    Huang, Huajie
    Zhang, Wenyao
    Fu, Yongsheng
    Wang, Xin
    ELECTROCHIMICA ACTA, 2015, 152 : 480 - 488
  • [28] Rapid electrochemical synthesis of δ-MnO2 from γ-MnO2 and unleashing its performance as an energy dense electrode
    Yadav, Gautam G.
    Wei, Xia
    Gallaway, Joshua W.
    Chaudhry, Zeeshan
    Shin, Amy
    Huang, Jinchao
    Yakobov, Roman
    Nyce, Michael
    Vanderklaauw, Nikhil
    Banerjee, Sanjoy
    MATERIALS TODAY ENERGY, 2017, 6 : 198 - 210
  • [29] A Comparitive investigation of electrochemical charge storage properties on β, γ, δ and λ-MnO2 Nanoparticles
    Shafi, P. Muhammed
    Johnson, Chelsea
    Bose, A. Chandra
    62ND DAE SOLID STATE PHYSICS SYMPOSIUM, 2018, 1942
  • [30] MnO2 Nanosheets on TiO2 Tetragonal Prism Nanoarrays as Electrode Materials for Electrochemical Energy Storage
    Xu, Dong
    Gu, Yuanhang
    Chen, Long
    Zhang, Yu
    You, Feng
    Chen, Shaoyun
    Hu, Chenglong
    Huang, Huabo
    Chen, Jian
    ACS APPLIED NANO MATERIALS, 2024, 7 (19) : 22997 - 23007